Russian Federation
Russian Federation
Russian Federation
Russian Federation
Currently, the application of mathematical modeling theory is widely used in various fields and, among other things, can be used to prevent illegal actions. This study examines scenarios involving a single pursuer tracking a single evader, as well as situations involving multiple pursuers pursuing multiple evaders. The authors formulate this problem as a search and pursuit problem for four-rotor unmanned aerial vehicles (UAVs) or quadcopters. The solution to the problem is based on game theory, as it provides a mathematical framework for modeling and studying strategic interactions involving multiple decision makers. The authors consider a game where the set of strategies of the runner is the set of possible combinations of speeds and directions of his movement, and the set of strategies of the pursuer is the set of all possible permutations of the elements of his speeds. The matrix of the resulting game consists of elements that are the time of capture. A mathematical problem on the optimal assignments of searching and pursuing unmanned aerial vehicles is formulated and solved. Purpose: optimizing the effectiveness of strategies for detecting and capturing four-rotor unmanned aerial vehicles (quadcopters). Methods: methods of mathematical modeling, game theory apparatus, Hungarian method of solving the problem of assignments, decision theory, the principle of dynamic programming, the Maple package for solving examples were used. Results: In order to fulfill the conditions for solving the problem of optimal assignments, it is necessary and sufficient that it is balanced. This assignment problem can be balanced by entering the required number of fictitious boats or escaping boats. After that, it is possible to formulate and solve the dual problem of optimal appointments. The resulting game can be solved by any method of solving matrix games. In this way, it is possible to determine the policy of harassment and search between drones. Practical importance: All escaped quadcopter UAVs can be chased and successfully intercepted using the developed models. Examples of the study of mathematical models using the Maple software package are given.
game theory, quadcopter, model, cooperative game theory, Simulink MPC modeling
1. Koopman B. O. Search and screening // Operation evolution group office of the chief of naval operations. Report № 56. Washington, 1946.
2. Hellman O. Vvedenie v teoriyu optimal'nogo poiska / per. s angl. E. M. Stolyarovoy. M.: Nauka, 1985. 246 s.
3. Abchuk V. A., Suzdal' V. G. Poisk ob'ektov. M.: Sovetskoe radio, 1977. 336 s.
4. Staroverov O. V. Ob odnoy zadache poiska // Teoriya veroyatnostey i ee primenenie. 1963. T. 8, № 2. S. 196–201.
5. Kelin M. Note a sequential search // Naval research Logistic Quarterly. 1968. Vol. 15, № 3.
6. Koopman B. O. Theory of search: I. Kinematic bases // Operations Reseach. 1956. Vol. 4, № 3.
7. Koopman B. O. Theory of search: III. The optimum distribution of searching efforts // Operations Research. 1957. Vol. 5, № 5.
8. Alferov G. V., Malafeev O. A., Mal'ceva A. S. Teoretiko-igrovye modeli poiska podvizhnogo ob'ekta pri inspektirovanii // Problemy mehaniki i upravleniya: nelineynye dinamicheskie sistemy, 2014. S. 11–19.
9. Alferov G. V., Malafeev O. A., Mal'ceva A. S. Model' provedeniya antikorrupcionnyh inspekciy // Upravlenie social'no-ekonomicheskim razvitiem regionov: problemy i puti ih resheniya: sbornik nauchnyh statey 4‑y Mezhdunarodnoy nauchno-prakticheskoy konferencii / Yugo-Zap. gos. un-t. Kursk, 2014. S. 20–24.
10. Malafeyev O., Kun Zhang. Problems of search and pursuit of unmanned aerial vehicles using the game-theoretic approach. Arxiv: 2305.19832.
11. Lapshin V. P. Kinematicheskie osnovy teo- rii poiska // Morskoy sbornik. 1962. № 8.
12. Charnes A., Cooper W. Theory of search: optimal distribution of search effort // Managemen Science. 1958. Vol. 5, № 1.
13. MacQueen J., Miller R. G. Optimal persistence polices // Operations Research. 1960. Vol. 8, № 3.
14. Posner E. C. Optimal search procedures // IEEE Transactions of Information Theory. 1963. Vol. 9, № 3.
15. Dubrovin K. O., Sirotin P. A. Vremya prebyvaniya celi v rayone poiska // Morskoy sbornik, 1965. № 6.
16. Morz F. M., Kimbell D. E. Metody issledovaniya operaciy / per. s angl. I. A. Poletaeva i K. N. Trofimova, pod red. A. F. Gorohova. M.: Sovetskoe radio, 1956. 308 s.
17. Brem Dzh. A. Igra s poiskom N-oblasti dlya 2 igrokov // Otchet OIRM 31, 1963.
18. Neyts M. F. Mnogoetapnaya poiskovaya igra // Zhurnal SIAM. 1963. T. 11, № 2.
19. Dzhonson S. M. Poiskovaya igra // Dostizheniya v teorii igr. Izdatel'stvo Prinstonskogo universiteta, 1964.
20. Danskin J. M. A theory of reconnaissance // Operations Research. 1963. Vol. 10, № 3.
21. Ayzeks R. Differencial'nye igry / per. s angl. V. I. Arkina, E. N. Simakovoy; pod red. M. I. Zelikina. M.: Mir. 1967. 479 s.
22. Zelikin M. I. Ob odnoy differencial'noy igre s nepolnoy informaciey // DAN SSSR. Seriya «Matematika, fizika». 1972. T. 202, № 5.
23. Al'pern S. Poiskovaya igra s podvizhnym ukrytiem na kruge // Differencial'nye igry i teoriya upravleniya. N'yu-York: Marsel' Dekker, 1974.
24. Forman Dzh. K. Princessa i chudovische na kruge // Differencial'nye igry i teoriya upravleniya. N'yu-York: Marsel' Dekker, 1974.
25. Forman Yu. G. Differencial'nye poiskovye igry s mobil'nym hiderom // Zhurnal SIAM po upravleniyu i optimizacii. 1977. T. 15, № 5.
26. Hal'pern B. Robot i zadacha presledovaniya krolika // The American Math. 1969. T. 76, № 2.
27. Gal S. Poiskovye igry s podvizhnym i nepodvizhnym haderom // Zhurnal SIAM po upravleniyu i optimizacii. 1979. T. 17, № 1.
28. Ficdzheral'd Ch. Differencial'naya igra «Princessa i chudovische» // Zhurnal SIAM po upravleniyu i optimizacii. 1979. T. 17, № 6.
29. Uilson D. D. Differencial'nye igry bez informacii // Zhurnal SIAM po upravleniyu i optimizacii. 1977. T. 15, № 2.
30. Mathematical model of network flow control / I. V. Zaitseva [et al.] // IOP Conference Series: Materials Science and Engineering. “1st International Conference on Innovative Informational and Engineering Technologies, IIET 2020”, 2020. P. 012036.
31. Alferov G. V. Generaciya strategii robota v usloviyah nepolnoy informacii o srede // Problemy mehaniki i upravleniya: nelineynye dinamicheskie sistemy. 2003. № 35. S. 4–24.
32. Grigor'eva K. V., Ivanov A. S., Malafeev O. A. Staticheskaya koalicionnaya model' investirovaniya innovacionnyh proektov // Ekonomicheskoe vozrozhdenie Rossii. 2011. № 4. S. 90–98.