Russian University of Transport (MIIT) ("Automation, Remote Control and Communication on Railway Transport" Department, Professor)
«Scientific Research and Design Institute «Transport and Construction Safety» LLC (General Director Deputy on Scientific Research Work)
Tashkent State Transport University ("Automation and Remote Control" Department, Professor)
Russian Federation
Russian Federation
UDK 004.052.32 Контроль неисправностей
The paper presents the results of studies on the characteristics of modular weight-based sum codes, where the sequence is formed by a natural series of numbers excluding powers of two. The consideration of the studied characteristics is advisable when developing discrete systems and their diagnostic support. Catalogs of the considered codes obtained using modules M = 4, 8, 16, 32, and 64 are provided. The choice of these specific modules is due to the fact that the number of check symbols in the codewords of the considered codes is small, which minimizes structural redundancy when constructing discrete systems and their diagnostic support, resulting in self-checking, controllable, and fault-tolerant structures. Modular weight-based sum codes detect all single errors with the number of data symbols . It is also demonstrated that the considered codes detect no fewer errors than the well-known modular sum codes of single digits (classical modular sum codes). As the module value increases, the gain in the tota number of errors detected by the modular weighted codes compared to classical modular codes significantly increases. Modular weighted codes are more effective at detecting multidirectional errors of even multiplicity in data vectors containing groups of distortions {0→1, 1→0} (symmetric errors) than classical modular sum codes. However, modular weight-based sum codes are less effective in handling asymmetric errors occurring in data vectors. In an experiment with test combinational circuits, it was shown that modular weighted codes with a module M = 4 do not detect more errors occurring at circuit outputs than classical modular codes with this module. Modular weight-based sum codes and a module M = 8 have slightly better characteristics. However, a general recommendation is to use modules that are powers of two starting from M = 16. Increasing the module allows for an increase in the number of detectable errors at the outputs of benchmarks, up to 100 % coverage. Modular weight-based sum codes, with a sequence of weight coefficients forming a natural series of numbers excluding powers of two, can be effectively used in the development of discrete systems and their diagnostic support.
technical diagnostics systems for discrete devices, modular weight-based sum codes, sequence of weight coefficients, natural series excluding powers of two
1. Metody postroeniya bezopasnyh mikroelektronnyh sistem zheleznodorozhnoy avtomatiki / V. V. Sapozhnikov, Vl. V. Sapozhnikov, H. A. Hristov i dr.; pod red. Vl. V. Sapozhnikova. M.: Transport, 1995, 272 s.
2. Rabochee diagnostirovanie bezopasnyh informacionno-upravlyayuschih sistem / A. V. Drozd, V. S. Harchenko, S. G. Antoschuk i dr.; pod red. A. V. Drozda i V. S. Harchenko. Har'kov: Nacional'nyy aerokosmicheskiy universitet im. N. E. Zhukovskogo HAI. 2012. 614 s.
3. Sapozhnikov Vl. V. Sintez sistem upravleniya dvizheniem poezdov na zheleznodorozhnyh stanciyah s isklyucheniem opasnyh otkazov // M.: Nauka, 2021. 229 s.
4. Funkcional'naya bezopasnost' sistem upravleniya na zheleznodorozhnom transporte / I. B. Shubinskiy, E. N. Rozenberg. M.: Infra-Inzheneriya, 2023. 360 s.
5. Drozd A., Kharchenko V., Antoshchuk S., Sulima J., Drozd M. Checkability of the Digital Components in Safety-Critical Systems: Problems and Solutions // Proceedings of 9th IEEE East-West Design & Test Symposium (EWDTS’2011), Sevastopol, Ukraine, 2011. P. 411–416. DOI:https://doi.org/10.1109/EWDTS.2011.6116606.
6. Hidden Fault Analysis of FPGA Projects for Critical Applications / O. Drozd [et al.] // 2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET) (25–29 February 2020, Lviv-Slavsko, Ukraine). IEEE, 2020. P. 142. DOI:https://doi.org/10.1109/TCSET49122.2020.235591.
7. Gavrilov M. A., Ostianu V. M., Potehin A. I. Nadezhnost' diskretnyh sistem // Itogi nauki. Seriya «Teoriya veroyatnostey. Matematicheskaya statistika. Teoreticheskaya kibernetika», 1969–1970. S. 7–104.
8. Gavzov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Metody obespecheniya bezopasnosti diskretnyh sistem // Avtomatika i telemehanika. 1994. № 8. S. 3–50.
9. McCluskey E. J. Logic Design Principles: With Emphasis on Testable Semicustom Circuits. N. J.: Prentice Hall PTR, 1986. 549 p.
10. Samoproveryaemye ustroystva i otkazoustoychivye sistemy / E. S. Sogomonyan, E. V. Slabakov. M.: Radio i svyaz', 1989. 208 s.
11. Pradhan D. K. Fault-Tolerant Computer System Design. New York: Prentice Hall, 1996, 560 p.
12. Lala P. K. Self-Checking and Fault-Tolerant Digital Design. San Francisco: Morgan Kaufmann Publishers, 2001. 216 p.
13. Fujiwara E. Code Design for Dependable Systems: Theory and Practical Applications. John Wiley & Sons, 2006. 720 p.
14. Göessel M., Ocheretny V., Sogomonyan E., Marienfeld D. New Methods of Concurrent Checking: Edition 1. Dordrecht: Springer Science + Business Media B. V., 2008, 184 p.
15. Kody s summirovaniem dlya sistem tehnicheskogo diagnostirovaniya. T. 1: Klassicheskie kody Bergera i ih modifikacii / V. V. Sapozhnikov, Vl. V. Sapozhnikov, D. V. Efanov. M.: Nauka, 2020, 383 s.
16. Kody s summirovaniem dlya sistem tehnicheskogo diagnostirovaniya. T. 2: Vzveshennye kody s summirovaniem / V. V. Sapozhnikov, Vl. V. Sapozhnikov, D. V. Efanov. M.: Nauka, 2021, 455 s.
17. Hamming R. W. Coding and Information Theory: 2nd edition. New Jersey, Prentice-Hall, 1986. 259 p.
18. Aksenova G. P. Metod sinteza shem vstroennogo kontrolya dlya avtomatov s pamyat'yu // Avtomatika i telemehanika. 1973. № 2. S. 109–116.
19. Borecký J., Kohlík M., Kubátová H. Parity Driven Reconfigurable Duplex System // Microprocessors and Microsystems. 2017. Vol. 52. P. 251–260. DOI:https://doi.org/10.1016/j.micpro.2017.06.015.
20. Piestrak S. J. Design of Self-Testing Checkers for Unidirectional Error Detecting Codes. Wrocław: Oficyna Wydawnicza Politechniki Wrocłavskiej, 1995. 111 p.
21. Efanov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Primenenie modul'nyh kodov s summirovaniem dlya postroeniya sistem funkcional'nogo kontrolya kombinacionnyh logicheskih shem // Avtomatika i telemehanika. 2015. № 10. S. 152–169.
22. Sapozhnikov V., Sapozhnikov Vl., Efanov D. Modular Sum Code in Building Testable Discrete Systems // Proceedings of 13th IEEE East-West Design & Test Symposium (EWDTS’2015), Batumi, Georgia, September 26–29, 2015. R. 181–187. DOI: 10.1109/ EWDTS.2015.7493133.
23. Sapozhnikov V. V., Sapozhnikov Vl.V., Efanov D. V. i dr. Modul'nye kody s summirovaniem v sistemah funkcional'nogo kontrolya. I. Svoystva obnaruzheniya oshibok kodami v informacionnyh vektorah // Elektronnoe modelirovanie. 2016. T. 38. № 2. S. 27–48.
24. Sapozhnikov V. V., Sapozhnikov Vl. V., Efanov D. V. i dr. Modul'nye kody s summirovaniem v sistemah funkcional'nogo kontrolya. II. Umen'shenie strukturnoy izbytochnosti sistem funkcional'nogo kontrolya // Elektronnoe modelirovanie. 2016. T. 38. № 3. S. 47–61.
25. Efanov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Sposob postroeniya semeystva kodov s summirovaniem s naimen'shim obschim kolichestvom neobnaruzhivaemyh oshibok v informacionnyh vektorah // Informatika. 2019. T. 16. № 3. S. 101–118.
26. Sapozhnikov V. V., Sapozhnikov Vl.V., Efanov D. V. Modul'no-vzveshennye kody s summirovaniem s naimen'shim obschim chislom neobnaruzhivaemyh oshibok v informacionnyh vektorah // Elektronnoe modelirovanie. 2017. T. 39. № 4. S. 69–88.
27. Berger J. M. A Note on Error Detection Codes for Asymmetric Channels // Information and Control. 1961. Vol. 4. Issue 1. P. 68–73. DOI:https://doi.org/10.1016/S0019-9958(61)80037-5.
28. The On-Line Encyclopedia of Integer Sequences. [Elektronnyy resurs] URL: https://oeis.org/ (data obrascheniya: 12.07.2024).
29. Mehov V. B., Sapozhnikov V. V., Sapozhnikov Vl. V. Kontrol' kombinacionnyh shem na osnove modificirovannyh kodov s summirovaniem // Avtomatika i telemehanika. 2008. № 8. S. 153–165.
30. Berger J. M. A Note on Burst Detection Sum Codes // Information and Control. 1961. Vol. 4. Issue 2–3. P. 297–299. DOI:https://doi.org/10.1016/S0019-9958(61)80024-7.
31. Das D., Touba N. A. Weight-Based Codes and Their Application to Concurrent Error Detection of Multilevel Circuits // Proceedings of 17th IEEE Test Symposium, California, USA, 1999. R. 370–376. DOI: 10.1109/ VTEST.1999.766691.
32. Das D., Touba N. A., Seuring M., Gossel M. Low Cost Concurrent Error Detection Based on Modulo Weight-Based Codes // Proceedings of the IEEE 6th International On-Line Testing Workshop (IOLTW), Spain, Palma de Mallorca, July 3–5, 2000 R. 171–176. DOI:https://doi.org/10.1109/OLT.2000.856633.
33. Efanov D. V., Pashukov A. V. Weight-Based Sum Codes with Arbitrary Modulus // IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 25–28 January 2022, St. Petersburg, Russia. R. 133–138. DOI:https://doi.org/10.1109/ElCon Rus54750.2022.9755482.
34. Efanov D. V., Pashukov A. V. Vzveshennye kody s summirovaniem v kol'ce vychetov po proizvol'nomu modulyu dlya sinteza cifrovyh vychislitel'nyh ustroystv // Izvestiya vuzov. Priborostroenie. 2022. T. 65. № 4. S. 231–246. DOI:https://doi.org/10.17586/0021-3454-2022-65-4-231-246.
35. Sapozhnikov V. V., Sapozhnikov Vl. V., Efanov D. V. Klassicheskie i vzveshennye kody Bergera v sistemah funkcional'nogo kontrolya // Razvitie elementnoy bazy i sovershenstvovanie metodov postroeniya ustroystv zheleznodorozhnoy avtomatiki i telemehaniki: sb. nauchn. trudov; pod. red. Vl. V. Sapozhnikova. SPb.: FGBOU VPO PGUPS, 2014. S. 81–88.
36. Sapozhnikov V. V., Sapozhnikov Vl.V., Efanov D. V. Analiz svoystv klassicheskih i vzveshennyh kodov Bergera po obnaruzheniyu oshibok v informacionnyh razryadah // Byulleten' rezul'tatov nauchnyh issledovaniy. 2014. № 2. S. 79–92.
37. Efanov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. O svoystvah koda s summirovaniem v shemah funkcional'nogo kontrolya // Avtomatika i telemehanika. 2010. № 6. S. 155–162.
38. Sapozhnikov V. V., Sapozhnikov Vl. V., Efanov D. V. Klassifikaciya oshibok v informacionnyh vektorah sistematicheskih kodov // Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie. 2015. T. 58. № 5. S. 333–343. DOI:https://doi.org/10.17586/0021- 3454-2015-58-5-333-343.
39. Efanov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Sintez samoproveryaemyh kombinacionnyh ustroystv na osnove vydeleniya special'nyh grupp vyhodov // Avtomatika i telemehanika. 2018. № 9. S. 79–94.
40. Efanov D. V. Sintez samoproveryaemyh vychislitel'nyh ustroystv na osnove polnoy sistemy osobyh grupp vyhodov ob'ekta diagnostirovaniya // Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie. 2023. T. 66. № 5. S. 355–372. DOI:https://doi.org/10.17586/0021-3454-2023-66-5-355-372.
41. Busaba F. Y., Lala P. K. Self-Checking Combinational Circuit Design for Single and Unidirectional Multibit Errors // Journal of Electronic Testing: Theory and Applications. 1994. Iss. 1. P. 19–28. DOI: 10.1007/ BF00971960.
42. Morosow A., Saposhnikov V. V., Saposhnikov Vl. V., Goessel M. Self-Checking Combinational Circuits with Unidirectionally Independent Outputs // VLSI Design. 1998. Vol. 5. Iss. 4. P. 333–345. DOI:https://doi.org/10.1155/1998/20389.
43. Saposhnikov V. V., Morosov A., Saposhnikov Vl. V., Göessel M. A New Design Method for Self-Checking Unidirectional Combinational Circuits // Journal of Electronic Testing: Theory and Applications. 1998. Vol. 12. Iss. 1–2. P. 41–53. DOI:https://doi.org/10.1023/A:1008257118423.
44. Matrosova A. Yu., Ostanin S. A. Self-Checking Synchronous Sequential Circuit Design for Unidirectional Error // Proceedings of the IEEE European Test Workshop (ETW’98), 27–29 May 1998, Sitges, Barcelona, Spain.
45. Efanov D. V., Sapozhnikov V. V., Sapozhnikov Vl. V. Kody s summirovaniem s fiksirovannymi znacheniyami kratnostey obnaruzhivaemyh monotonnyh i asimmetrichnyh oshibok dlya sistem tehnicheskogo diagnostirovaniya // Avtomatika i telemehanika. 2019. № 6. S. 121–141.
46. Collection of Digital Design Benchmarks. [Elektronnyy resurs] URL: https://ddd.fit.cvut.cz/www/prj/ Benchmarks/ (data obrascheniya: 21.05.2024).
47. Samoproveryaemye diskretnye ustroystva / V. V. Sapozhnikov, Vl. V. Sapozhnikov. SPb: Energoatomizdat, 1992. 224 s.
48. Carter W. C., Duke K. A., Schneider P. R. Self-Checking Error Checker for Two-Rail Coded Data // United States Patent Office, filed July 25, 1968, ser. No. 747533, patented Jan. 26, 1971, N. Y., 10 p.
49. Logicheskie osnovy proektirovaniya diskretnyh ustroystv / A. D. Zakrevskiy, Yu. V. Pottosin, L. D. Cheremisinova. M.: Fizmatlit, 2007, 592 s.50. Sentovich E. M., Singh K. J., Moon C., Savoj H., Brayton R. K., Sangiovanni-Vincentelli A. Sequential Circuit Design Using Synthesis and Optimization // Proceedings IEEE International Conference on Computer Design: VLSI in Computers & Processors, 11–14 October 1992, Cambridge, MA, USA, pp. 328–333, doi:https://doi.org/10.1109/ICCD.1992.276282.
50. SIS: A System for Sequential Circuit Synthesis / E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, A. Sangiovanni-Vincentelli // Electronics Research Laboratory, Department of Electrical Engineering and Computer Science, University of California, Berkeley, 4 May 1992, 45 p.
51. Harris D. M., Harris S. L. Digital Design and Computer Architecture. Morgan Kaufmann, 2012. 569 p.
52. Efanov D. V., Elina E. I. Sintez koderov vzveshennyh kodov s summirovaniem v kol'ce vychetov po zadannomu modulyu // Programmnaya inzheneriya. 2024. T. 15. № 6. S. 296–307. DOI: 10.17587/ prin.15.296–307.
53. Saposhnikov V., Saposhnikov Vl. New Code for Fault Detection in Logic Circuits // Proceedings of 4th International Conference on Unconventional Electromechanical and Electrical Systems, St. Petersburg, Russia, June 21–24, 1999. P. 693–696.
54. Dmitriev V. V. O dvuh sposobah vzveshivaniya i ih vliyanii na svoystva kodov s summirovaniem vzveshennyh perehodov v sistemah funkcional'nogo kontrolya logicheskih shem // Izvestiya Peterburgskogo universiteta putey soobscheniya. 2015. № 3 (44). S. 119–129.