FORMATION OF OBJECTIVE INDICATORS OF MARSHALLING YARD PERFORMANCE BASED ON DATA “FROM THE WHEEL”
Abstract and keywords
Abstract (English):
The paper presents a new principle for forming freight marshalling yard indicators based on the use of data from various reading devices and sensors located on the station tracks (data “from the wheel”). The paper shows the relevance and objectivity of using the proposed approach, implementing the presented principles for obtaining real freight yard indicators. The implementation is presented on the basis of data generated by the system for monitoring and preparing information on the movements of wagons and locomotives at the station in real time. The difference between the results obtained as a result of implementing the proposed approach and the information generated in real certificates and reporting journals of Russian Railways JSC is shown. Hypotheses-descriptions of the difference between information “from the wheel” and information obtained by manual input of data on the movements of cars and locomotives are proposed. The conclusion describes further prospects for automation of calculation and forecasting of station operation based on data “from the wheel”.

Keywords:
marshalling yard, wheel-based yard model, freight transportation planning, yard performance indicators
Text
Publication text (PDF): Read Download
References

1. Zaharov D. V. Cifrovizaciya ekonomiki: problemy i perspektivy // Razvitie nauki, nacionalnoj innovacionnoj sistemy i tehnologij: sbornik nauchnyh trudov po materialam Mezhdunarodnoj nauchno-prakticheskoj konferencii (13 maya 2020 g.). Belgorod: APNI, 2020. S. 102. (In Russian).

2. Nadkarni S., Prügl R. Digital transformation: a review, synthesis and opportunities for future research // Management Review Quarterly. 2021. T. 71. P. 233–341.

3. Razvitie kompleksa sistemoobrazuyushhih tehnicheskih reshenij cifrovoj stancii / A. E. Hatlamadzhiyan [i dr.] // Trudy AO “NIIAS”: sbornik statej. 2021. T. 2. Vyp. 11. S. 26–37. (In Russian).

4. Khabarov V. I., Volegzhanina I. S. Digital Railway as a precondition for industry, science and education interaction by knowledge management // IOP Conference Series: Materials Science and Engineering. 2020. T. 918. № 1. P. 012189.

5. Shubinsky I. B., Rozenberg E. N., Schäbe H. Methods for ensuring and proving functional safety of automatic train operation systems // Reliability: Theory & Applications. 2024. T. 19. № 1 (77). S. 360–375.

6. Cifrovaya zheleznodorozhnaya stanciya — ot koncepcii k real'nomu vnedreniyu / V. E. Andreev [i dr.] // Avtomatika, svyaz', informatika. 2023. № 9. S. 2–6. (In Russian).

7. Vypolnenie proekta “Cifrovaya sortirovochnaya stanciya” v ramkah realizacii programmy “Cifrovaya ekonomika Rossijskoj Federacii” / E. A. Zabolotskaya [i dr.] // Modern Science. 2020. № 12–4. S. 82–87. EDN JCTTJB. (In Russian).

8. Shabel'nikov A. N., Smorodin A. N. Kompleksnaya avtomatizaciya uzlovoj sortirovochnoj stancii // Avtomatika, svyaz' i informatika. 2018. № 4. S. 12–14. (In Russian).

9. A survey on machine learning for data fusion / T. Meng [et al.] // Information Fusion. 2020. T. 57. P. 115–129.

10. Makarova A. A. Avtomatizirovannaya sistema operativnogo upravleniya perevozkami // Ekosistema cifrovoj ekonomiki: problemy, realii i perspektivy. Orel: OrelGUET, 2018. S.114–118. (In Russian).

11. Nikandrov V. A. Ot organizacionnogo edinstva k plodotvornomu sotrudnichestvu // Avtomatika, svyaz, informatika. 2011. № 7. S. 11. (In Russian).

12. Ol'gejzer I. A. Bezopasnost' rospuska sostavov na sortirovochnyh gorkah. Granichnye usloviya funkcionirovaniya pri ekspluatacii gorochnyh sistem avtomatizacii // Bezopasnost' dvizheniya poezdov: trudy XIX Vserossijskoj nauchno-prakticheskoj konferencii. M., 2019. Ch. 1. S. 65–67. (In Russian).

13. Hatlamadzhiyan A. E., Lebedev A. I. Integrirovannyj post avtomatizirovannogo priema i diagnostiki podvizhnogo sostava na sortirovochnyh stanciyah // Vagony i vagonnoe xozyajstvo. 2019. № 2. S. 9–13. (In Russian).

14. Zamyshlyaev A. M., Kalinin A. V., Dolganyuk S. I. Sistema MALS: zadachi i perspektivy // Avtomatika, svyaz', informatika. 2016. № 10. S. 30–33. (In Russian).

15. UAV-YOLOv8: A small-object detection model based on improved YOLOv8 for UAV aerial photography scenarios / G. Wang [et al.] // Sensors. 2023. T. 23. № 16. P. 7190.

16. Image segmentation based on improved unet / X. Li [et al.] // Journal of Physics: Conference Series. 2021. T. 1815. № 1. P. 012018.

17. Shabel'nikov A. N., Ol'gejzer I. A., Suxanov A. V. Koncepciya cifrovoj platformy na sortirovochnyh stanciyah // Mir transporta. 2021. T. 19. № 1. C. 60–73. DOI:https://doi.org/10.30932/1992-3252-2021-19-1-60-73. (In Russian).

18. Laroca R., Boslooper A. C., Menotti D. Automatic Counting and Identification of Train Wagons Based on Computer Vision and Deep Learning. URL: https:// arxiv.org/abs/2010.16307.

19. Trends and future perspective challenges in big data / M. Naeem [et al.] // Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications (15–18 October 2019, Arad, Romania). Springer Singapore, 2022. P. 309–325.

Login or Create
* Forgot password?