Russian Federation
Russian Federation
the work is dedicated to the problem of mathematical modeling of track circuits during a rail break in complex configuration track circuits. In the first part of the article, a methodology for calculating the A-parameters of the equivalent four-pole of the track circuit is presented, which allows for the use of computers to avoid the analytical solution of the equation system based on boundary conditions for determining the integration constants, and subsequent derivation of analytical expressions for determining the A-parameters. This methodology is described using the simplest case of a rail break in an unbranched track circuit bounded by insulating joints. In the second part, an example of implementing the described methodology in the form of program code in the Python programming language on this simplest example is provided, demonstrating practical coincidence with the results calculated using known formulas. In the third part of the article, equations are presented that allow using the presented methodology to calculate the A-parameters of the equivalent four-pole of the rail line of a branched track circuit with three switches and four relay ends for all possible variants of rail break localization.
track circuit, mathematical model of rail line, simulation modeling, broken rail mode, rail break
1. Bryleev A. M. Teoriya, ustroystvo i rabota rel'sovyh cepey / A. M. Bryleev, Yu. A. Kravcov, A. A. Shishlyakov. M.: Transport, 1978. 344 s.
2. Kravcov Yu. A. Metodika rascheta kontrol'nogo rezhima tonal'nyh rel'sovyh cepey / Yu. A. Kravcov, Yu. I. Zenkovich, V. S. Kuznecov i dr. // Nauka i tehnika transporta. 2003. № 3. S. 68–72.
3. Arkatov V. S. Rel'sovye cepi. Analiz raboty i tehnicheskoe obsluzhivanie / V. S. Arkatov, Yu. A. Kravcov, B. M. Stepenskiy. M.: Transport, 1990. 295 s.
4. Arkatov V. S. Rel'sovye cepi magistral'nyh zheleznyh dorog / V. S. Arkatov, Yu. V. Arkatov, S. V. Kazeev, Yu. V. Obodovskiy // Spravochnik. 3‑e izdanie, pererabotannoe i dopolnennoe. M.: OOO Micsiya-M, 2006. 496 s.
5. Kravcov Yu. A. Elektromagnitnaya sovmestimost' rel'sovyh cepey i elektropodvizhnogo sostava s asinhronnym tyagovym privodom // Avtomatika na transporte. 2015. T. 1, № 1. S. 7–27.
6. Kravcov Yu. A. Metodika rascheta kontrol'nogo rezhima rel'sovoy cepi s uchetom vozdeystviya toka elektropodvizhnogo sostava s asinhronnym tyagovym privodom / Yu. A. Kravcov, E. V. Arhipov, A. B. Chegurov i dr. // Izvestiya Peterburgskogo universiteta putey soobscheniya. 2013. № 1. S. 108–115.
7. Vasilenko M. N. Raschet parametrov i proverka rabotosposobnosti besstykovyh tonal'nyh rel'sovyh cepey / M. N. Vasilenko, B. P. Denisov, V. B. Kul'tin i dr. // Izvestiya Peterburgskogo universiteta putey soobscheniya. SPb.: PGUPS, 2006. Vyp. 2. S. 104–112.
8. Markov D. S. Formalizovannaya shema processa imitacionnogo modelirovaniya rel'sovoy linii / D. S. Markov, M. B. Sokolov, V. B. Sokolov // Avtomatika na transporte. 2020. T. 6, № 2. S. 204–219.