MATHEMATICAL MODELLING OF THE “WATER — GROUND MASS — IMMERSED SECTION” SYSTEM
Abstract and keywords
Abstract (English):
To formulate recommendations for constructing a mathematical model using the finite element method for determining the stress-strain state of immersed sections within the “water — ground mass — immersed section” system. Methods: The finite element method and the Metrogiprotrans technique were used. Results: When comparing the Metrogiprotrans technique with the finite element method for modelling the immersed tunnel sections that considers construction stages, additional force impacts from the soil foundation and the effects of sliding backfill prisms have been identified. During the mathematical modelling of the “water — ground mass — immersed section” system, an unexpected mathematical phenomenon related to hydrostatic pressure exerted from within the section has been discovered. Three potential solutions have been put forward to mitigate this effect: the introduction of a specified filling material for the sections, the application of internal “back pressure” within the section, and the substitution of the “Water Level” function with a consistent distribution of loads at each simulation stage. Following the comparative analysis of the options, the most effective solution, from a modelling perspective, that aligned with the Metrogiprotrans method, has been chosen. Practical significance: The study’s outcomes can be applied during the design phase of structures to effectively model the “water — ground mass — immersed section” system using the finite element method.

Keywords:
Underwater tunnel, immersed sections, mathematical modelling, finite element method (FEM), Metrogiprotrans method, HRM
Text
Text (PDF): Read Download
References

1. Makovskiy L. V. Podvodnye transportnye tonneli iz opusknyh sekciy / L. V. Makovskiy, V. V. Kravchenko. — Moskva: Knorus, 2020. — 144 s.

2. Sokornov A. A. Raschet obdelki na zadannye nagruzki metodom konechnyh elementov i metodom Metrogiprotransa / A. A. Sokornov, A. N. Kon'kov // Putevoy navigator. — 2023. — № 56(82). — S. 42–51.

3. Shaposhnikov E. A. Sediments of an underwater tunel constructed by the immersed sections method / E. A. Shaposhnikov, I. V. Melnik // E3S web of conferences. — 2024. — Vol. 549. — DOI:https://doi.org/10.1051/e3sconf/202454903030.

4. Li Y. Seismic performance study of immersed tunnel with longitudinal limit device of flexible joint / Y. Li, J. Lai, Y. Yang, J. Zhou et al. // Underground Space. — 2025. — Vol. 20. — Pp. 17–32. — DOI:https://doi.org/10.1016/j.undsp.2024.04.007.

5. Hao D. Experimental study on the mechanical response model of the vertical shear key under typical deformation of segmental joints of the iservice immersed tunnel / D. Hao, G. Hongyan, Ch. Liang, X. Jiang et al. // Tunnelling and Underground Space Technology. — 2025. — Vol. 157. — DOI:https://doi.org/10.1016/j.tust.2024.106337.

6. Su Ch. Mechanical behavior of immersed tunnel under the influence of differential settlements: A case study of GZ tunnel / Ch. Su, A. Che, Z. Xu, Zh. Han et al. // Tunnelling and Underground Space Technology. — 2024. — Vol. 151. — DOI:https://doi.org/10.1016/j.tust.2024.105873.

7. Hart C. M. P. ’t The influence of spatial variation on the design of foundations of immersed tunnels: Advanced probabilistic analysis / C. M. P. ’t Hart, O. Morales-Nápoles, B. Jonkman // Tunnelling and Underground Space Technology. — 2024. — Vol. 147. — DOI:https://doi.org/10.1016/j. tust.2024.105624.

8. Li J. Experimental study on joint behaviour of immersed tunnel subjected to differential settlement / J. Li, P. Ni, Zh. Lu // Tunnelling and Underground Space Technology. — 2025. — Vol. 156. — DOI:https://doi.org/10.1016/j. tust.2024.106261.

9. Tang C. Enhanced elastic beam model with BADS integrated for settlement assessment of immersed tunnels / C. Tang, S.-Y. He, Z. Guan, W.-H. Zhou et al. // Underground Space. — 2023. — Vol. 12. — Pp. 79–88. — DOI:https://doi.org/10.1016/j. undsp.2023.02.005.

10. He S.-Y. Settlement-based triple factor framework for long-term safety assessment of immersed tunnel / S.-Y. He, C. Tang, M. Pan, W.-H. Zhou // Tunnelling and Underground Space Technology. — 2025. — Vol. 162. — DOI: https://doi.org/10.1016/j.tust.2025.106597.

11. Bai X. An integrated model for seabed liquefaction analysis around an immersed tunnel with a backfilled trench under wave-current hydrodynamics / X. Bai, H. Luo, Q. Wang, K. Zhao et al. // Ocean Engineering. — 2025. — Vol. 331. — DOI:https://doi.org/10.1016/j.oceaneng.2025.121335.

12. Zhou Y. Numerical study on hydrodynamic analysis and resonant behavior of the immersed tunnel suspended by barge / Y. Zhou, L. Chen, Z. Sun, P. Zhang // Ocean Engineering. — 2025. — Vol. 332. — DOI:https://doi.org/10.1016/j. oceaneng.2025.121362.

13. Wang B. Seismic response analysis of the three- dimensional model of immersed tunnel considering offshore site factors / B. Wang, S. Hu, W. Hu, G. Song et al. // Structures. — 2025. — Vol. 75. — DOI:https://doi.org/10.1016/j. istruc.2025.108589.

14. Hu Z.-n. Mechanical and Failure Characteristics of Shear Keys on Immersed Tunnel Segment Joints under Differential Settlements / Hu Z.-n., Xie Y.-l. // Procedia Engineering. — 2016. — Vol. 166. — Pp. 373–378. — DOI:https://doi.org/10.1016/j.proeng.2016.11.564.

15. Wu M. Risk Assessment of Operation Period Structural Stability for Long and Large Immersed Tube Tunnel / M. Wu, Q. Zhang, S. Wu // Procedia Engineering. — 2016. — Vol. 166. — Pp. 266–278. — DOI:https://doi.org/10.1016/j. proeng.2016.11.549.

Login or Create
* Forgot password?