INTELLIGENT SYSTEM DETECTING SAFETY REQUIREMENTS VIOLATION IN RAILWAY INFRASTRUCTURE MAINTENANCE
Abstract and keywords
Abstract (English):
Safety improvement issues concerning workers engaged in the repair and maintenance of railway infrastructure are considered in this paper. The main purpose of the work is to improve labour protection requirements compliance through the development and implementation of an intelligent system for detecting violations of safety requirements during work on railway infrastructure. The object of the research is to develop detection violation algorithms for labor protection of railway workers. As part of the research presented, the data necessary for the system learning models was collected and marked up. A generalized algorithm for detecting violations in using personal protective equipment has been developed based on the work team detection model and the violation classification of using personal protective equipment. Functioning of the detection violation model in terms of labour protection requirements under different methods of image interpolation has been researched. The research showed that the number of training epochs and the type of interpolation affect the quality of the model tested. The research presented logically integrates into the semantic network of predictive analytics models in railway transport and confirms the practical value of the previously obtained theories on the construction of such model hierarchy.

Keywords:
convolutional neural network; detection; occupational safety; safety; personal protective equipment; intelligent system
References

1. Ivashevskiy M. R. Sistemy videonablyudeniya na zheleznodorozhnom transporte / M. R. Ivashevskiy // Mir transporta. — 2019. — T. 17. — № 5(84). — S. 298–314. — DOI:https://doi.org/10.30932/1992-3252-2019-17-5-298-314. — EDN: https://elibrary.ru/NSTKCT.

2. Panchenko K. P. Internet veschey kak sistema prediktivnoy diagnostiki zheleznodorozhnoy infrastruktury / K. P. Panchenko, V. V. Degtyareva, E. V. Maslova // Kompleksnoe vzaimodeystvie lingvisticheskih i vypuskayuschih kafedr v tehnicheskom vuze: Mezhdunarodnaya nauchno-prakticheskaya konferenciya posvyaschennaya 125- letiyu RUT (MIIT), Moskva, 27 maya 2021 goda. — M.: Rossiyskiy universitet transporta, 2021. — S. 271– 274. — EDN: https://elibrary.ru/VPEBGD.

3. Sidorenko V. G. Prognozirovanie vyhoda iz stroya tyagovyh elektrodvigateley elektropodvizhnogo sostava zheleznyh dorog s ispol'zovaniem glubokih neyronnyh setey / V. G. Sidorenko, M. A. Kulagin // Elektrotehnika. — 2021. — № 9. — S. 52–56. — EDN: https://elibrary.ru/NDPPGU.

4. Kovalenko N. I. Primenenie cifrovizacii pri planirovanii kontingenta po tehnicheskomu obsluzhivaniyu zheleznodorozhnoy infrastruktury / N. I. Kovalenko, V. A. Buchkin, Yu. A. Bykov, E. N. Grin' // Mir transporta. — 2021. — T. 19. — № 2(93). — S. 116–121. — DOI:https://doi.org/10.30932/1992-3252-2021-19-2-16. — EDN: https://elibrary.ru/AQIPDB.

5. Popov P. A. Prospects of autonomous railway transport development / P. A. Popov, A. V. Ozerov, A. S. Marshova // BRICS Transport. — 2024. — Vol. 3. — № 3. — Rr. 1–14. — DOI:https://doi.org/10.46684/2024.3.4. — EDN: https://elibrary.ru/HPYXEZ.

6. Ivanov V. F. Algoritm kompleksirovaniya sensornyh dannyh dlya zadach avtomaticheskogo upravleniya podvizhnym sostavom / V. F. Ivanov, A. L. Ohotnikov, A. N. Gradusov // Avtomatika na transporte. — 2024. — T. 10. — № 4. — S. 360–371. — DOI:https://doi.org/10.20295/2412-9186- 2024-10-04-360-371. — EDN: https://elibrary.ru/QWNIRH.

7. Polyanskiy A. V. Inzhenerno-intellektual'noe obespechenie tehnologicheskih processov v zheleznodorozhnom stroitel'stve / A. V. Polyanskiy. — M.: Mir nauki, 2023. — 245 s. — DOI:https://doi.org/10.15862/39MNNPM23. — EDN: https://elibrary.ru/WYHBRO.

8. Kovalenko N. I. Ocenka riskov narusheniya chislennosti personala v putevom hozyaystve / N. I. Kovalenko, A. N. Kovalenko // Put' i putevoe hozyaystvo. — 2024. — № 2. — S. 25–29. — EDN: https://elibrary.ru/FQBKKL.

9. Grinchar N. G. Ob ispol'zovanii parkov putevyh mashin / N. G. Grinchar // Put' i putevoe hozyaystvo. — 2023. — № 6. — S. 7–10. — EDN: https://elibrary.ru/JJBPJQ.

10. Bystrov E. N. Obespechenie sredstvami individual'noy zaschity rabotnikov predpriyatiy transportnoy sfery / E. N. Bystrov, A. V. Harlamova // Izvestiya Peterburgskogo universiteta putey soobscheniya. — 2023. — T. 20. — № 2. — S. 396–403. — DOI:https://doi.org/10.20295/1815-588X-2023-2- 396-403. — EDN: https://elibrary.ru/OEOTNG.

11. Larichev D. V. Sovremennyy metod detektirovaniya sredstv individual'noy zaschity dlya lica s ispol'zovaniem tehnicheskogo zreniya i glubokogo mashinnogo obucheniya / D. V. Larichev, V. N. Pankrushin, A. I. Uglanov [i dr.] // Sostoyanie i perspektivy razvitiya sovremennoy nauki po napravleniyu «Tehnicheskoe zrenie i raspoznavanie obrazov» : sbornik statey II Vserossiyskoy nauchno-tehnicheskoy konferencii, Anapa, 22 oktyabrya 2020 goda / Voennyy innovacionnyy tehnopolis «ERA». T. 2. — Anapa: Federal'noe gosudarstvennoe avtonomnoe uchrezhdenie «Voennyy innovacionnyy tehnopolis “ERA”», 2020. — S. 183–189. — EDN: https://elibrary.ru/QNLITG.

12. Sennikov A. V. Razrabotka algoritma detektirovaniya sredstv individual'noy zaschity na videodannyh / A. V. Sennikov, A. F. Stefanidi // Novye informacionnye tehnologii i sistemy (NITiS-2021): Sbornik nauchnyh statey po materialam XVIII Mezhdunarodnoy nauchno tehnicheskoy konferencii, Penza, 24–26 noyabrya 2021 goda. — Penza: Penzenskiy gosudarstvennyy universitet, 2021. — S. 150–155. — EDN: https://elibrary.ru/KHUHJM.

13. Malofeev M. V. Innovacionnye cifrovye tehnologii v oblasti promyshlennoy bezopasnosti ohrany truda i okruzhayuschey sredy / M. V. Malofeev, P. I. Chermyanin, M. B. Koshelev [i dr.] // Ekspoziciya Neft' Gaz. — 2022. — № 5(90). — S. 82–85. — DOI:https://doi.org/10.24412/2076-6785-2022-5- 82-85. — EDN: https://elibrary.ru/NDMMUI.

14. Maheronnaghsh S. Machine learning in Occupational Safety and Health — a systematic review / S. Maheronnaghsh, H. Zolfagharnasab, M. Gorgich, J. Duarte // International Journal of Occupational and Environmental Safety. — 2023. — Vol. 7. — № 1. — P. 14–32. — DOI:https://doi.org/10.24840/2184-0954_007-001_001586. — EDN: https://elibrary.ru/YAHOWE.

15. Sidorenko V. G. Obobschenie opyta resheniya zadach prediktivnoy analitiki na zheleznodorozhnom transporte / V. G. Sidorenko, M. A. Kulagin // Nauka i tehnika transporta. — 2024. — № 4. — S. 55–62.

16. Scheer A. W. Business process engineering: reference models for industrial enterprises / A. W. Scheer. — Springer Science & Business Media, 2012. — DOI:https://doi.org/10.1007/978-3- 642-79142-0.

17. Khanam R. YOLO 11: An overview of the key architectural enhancements / R. Khanam, M. Hussain // arXiv preprint arXiv:2410.17725. — 2024. — DOI: 10.48550/ arXiv.2410.17725.

18. Pangal D. J. A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision / D. J. Pangal, G. Kugener, Sh. Shahrestani [et al.] // World Neurosurgery. — 2021. — Vol. 150. — Pr. 26–30. — DOI:https://doi.org/10.1016/j.wneu.2021.03.022. — EDN: https://elibrary.ru/LVOUCM.

19. Goodfellow I. Deep Learning / I. Goodfellow, Y. Bengio, A. Courville. — MIT Press, 2016. — DOI:https://doi.org/10.1007/s10710- 017-9314-z.

20. Bishop C. M. Pattern Recognition and Machine Learning / C. M. Bishop. — Springer, 2006.

21. Powers D. M. W. Evaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation / D. M. W. Powers // Journal of Machine Learning Technologies. — 2011. — Vol. 2(1). — P. 37–63. — DOI:https://doi.org/10.48550/arXiv.2010.16061.

Login or Create
* Forgot password?