DETECTION OF TRANSPORT OBJECT COORDINATES UNDER SIGNAL SCARCITY USING TAKAGI — SUGENO FUZZY INFERENCE MODEL
Abstract and keywords
Abstract (English):
The significance of real-time detection of transport object coordinates has increased in conditions of information “blindness” when traditional navigation methods become unavailable. This is especially important in rail transport where positioning errors can lead to catastrophic consequences. Purpose: to develop an algorithm based on Takagi — Sugeno fuzzy inference to improve the accuracy and reliability of detecting the transport object coordinates in conditions of data scarcity. Methods: an adaptive model integrating fuzzy logic for processing incomplete and contradictory signals is proposed. The algorithm implements multi-level data analysis taking into account the dynamics of movement and external interference for the infrastructure critical sections. Results: computer experiments have been conducted for railway sections with a limited number of track sensors. Recommendations on the algorithm application to support decision-making have been developed. Discussion: the effectiveness of using fuzzy logic to compensate for information “blindness” has been proven. The prospects for implementing the algorithm in security and dispatching systems, as well as the need for further optimization of computational complexity for high-speed objects have been outlined.

Keywords:
identification, object coordinates, transport objects, Takagi - Sugeno algorithm, information "blindness", traffic safety
Text
Text (PDF): Read Download
References

1. Saraikin A. I., Aralbaev T. Z., Khasanov R. I. Pozitsionirovanie mobilnogo obekta na dorozhnom polotne v usloviyakh defitsita informatsii [Positioning of Mobile Objects on the Roadway in a Deficit of Information], Vestnik Orenburgskogo gosudarstvennogo universiteta [Vestnik of the Orenburg State University], 2015, No. 4 (179), Pp. 114–118. (In Russian) EDN: https://elibrary.ru/UHINLP

2. Khrul S. A., Sonkin D. M. Povyshenie tochnosti pozitsionirovaniya podvizhnykh obektov na osnove originalnykh metodov filtratsii navigatsionnykh dannykh [Increasing Positioning Accuracy of Moving Objects Based on the Original Navigation Data Filtering Methods], Naukovedenie, 2013, No. 4 (17), 11 p. (In Russian)

3. Antonovich K. M., Karpik A. P. Monitoring obektov s primeneniem GPS-tekhnologiy [Monitoring of Objects Using GPS Technologies], Izvestiya vysshikh uchebnykh zavedeniy. Geodeziya i aerofotosemka [Proceedings of Higher Education Institutions. Geodesy and Aerophotosurveying], 2004, No. 1, Pp. 53–67. (In Russian) EDN: https://elibrary.ru/VGANYP

4. Danilyuk A. Yu., Revnivykh S. G., Testoedov N. A., et al. GLONASS — strategicheskiy resurs Rossii [GLONASS Is the Strategic Resource of Russia], Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika M. F. Reshetneva [Vestnik of the Reshetnev Siberian State Aerospace University], 2013, Iss. 6 (52), Pp. 17–23. (In Russian) EDN: https://elibrary.ru/RTBNOP

5. Yadrovskaya M. V., Porksheyan M. V., Sinelnikov A. A. Prospects of IoT Technology, Advanced Engineering Research, 2021, Vol. 21, No. 2, Pp. 207–217. DOI:https://doi.org/10.23947/2687-1653-2021-21-2-207-217. EDN: https://elibrary.ru/HXPZIC

6. Gerber A., Romeo J. Connecting All the Things in the Internet of Things, IBM Developer. Published online January 30, 2020. Available at: http://developer.ibm.com/articles/iot-lp101-connectivity-network-protocols (accessed: 09.02.2025).

7. Provotorov A., Privezentsev D., Astafiev A. Development of Methods for Determining the Locations of Large Industrial Goods During Transportation on the Basis of RFID, Procedia Engineering, 2015, Vol. 129, Pp. 1005–1009. DOI:https://doi.org/10.1016/j.proeng.2015.12.163. EDN: https://elibrary.ru/WUZKKH

8. Voytsekhovsky S. V., Golovchanskaya U. Yu., Logashev S. V., Fomenko Yu. S. Metodika primeneniya nechetkikh mnozhestv v sisteme podderzhki prinyatiya resheniy robototekhnicheskogo kompleksa [Method of Application of Fuzzy Sets in the System of Support of Decision-Making of the Robotechnical Complex], Intellektualnye tekhnologii na transporte [Intellectual Technologies on Transport], 2018, No. 2 (14), Pp. 34–40. (In Russian) EDN: https://elibrary.ru/VJWYLU

9. Khomonenko A. D. Logashev S. V., Krasnov S. A. Avtomaticheskaya rubrikatsiya dokumentov s pomoshchyu latentno-semanticheskogo analiza i algoritma nechetkogo vyvoda Mamdani [Automatic Categorization of Documents Using Latent Semantic Analysis and Fuzzy Inference Algorithm of Mamdani], Trudy SPIIRAN [SPIIRAS Proceedings], 2016, Iss. 1 (44), Pp. 5–19. (In Russian) DOI: https://doi.org/10.15622/SP.44.1; EDN: https://elibrary.ru/VOORAX

10. Dusakaeva S. T., Nosarev M. P., Khokhlov I. A., Niryan P. L. Primenenie algoritma nechetkoy logiki Mamdani dlya otsenki kachestva modeley iskusstvennogo intellekta na osnove imeyushchikhsya dannykh [Application of the Mamdani Fuzzy Logic Algorithm to Assess the Quality of Artificial Intelligence Models Based on Available Data], Sovremennye tekhnologii. Sistemnyy analiz. Modelirovanie [Modern Technologies. System Analysis. Modeling], 2023, No. 1 (77), Pp. 170–180. DOI:https://doi.org/10.26731/1813-9108.2023.1(77).170-180. (In Russian) EDN: https://elibrary.ru/SVPILB

11. Takagi T., Sugeno M. Fuzzy Identification of Systems and Its Applications to Modeling and Control, IEEE Transactions on Systems, Man, and Cybernetics, 1985, Vol. SMC-15, Iss. 1, Pp. 116–132. DOI:https://doi.org/10.1109/TSMC.1985.6313399.

12. Filatova E. S., Devyatkin A. V., Fridrix A. I. Sistema stabilizatsii BPLA na osnove nechetkoy logiki [UAV Fuzzy Logic Stabilization System], Sbornik dokladov XX Mezhdunarodnoy konferentsii po myagkim vychisleniyam i izmereniyam [Proceedings of the XX International Conference on Soft Computing and Measurement] (SCM’2017), St. Petersburg, Russia, May 24–26, 2017. Vol. 1. Saint Petersburg, Saint Petersburg Electrotechnical University “LETI”, 2017, Pp. 380–383. (In Russian)

13. Fakurian F., Menhaj M. B., Mohammadi A. Design of a Fuzzy Controller by Minimum Controlling Inputs for a Quadrotor, Proceedings of the Second RSI International Conference on Robotics and Mechatronics (ICROM 2014), Tehran, Iran, October 15–17, 2014. Institute of Electrical and Electronics Engineers, 2014. Pp. 619–624. DOI:https://doi.org/10.1109/ICRoM.2014.6990971.

Login or Create
* Forgot password?