The paper introduces a new method for public encryption in which the enciphering process is performed as a generation of the coeffi cients of some cubic equation and the deciphering process is solving the equation. Security of the method is based on a difficulty of the factoring problem, namely, difficulty of factoring a composite number n that serves as a public key. The private key is the pair of primes p and q such that n = pq. The deciphering process is performed as solving cubic congruence modulo n. Finding roots of cubic equations in the fi elds GF(p) and GF(q) is the first step of the decryption. The paper also describes a method for solving cubic equations defi ned over prime fi nite fi elds. Introduced method of public encryption is applied for development of deniable encryption protocol, which is resistant against two-sided coercive attacks.
cryptography, encryption, public key encryption, deniable encryption, public key, probabilistic encryption, factorization problem, cubic equation, prime finite field.
1. Moldovyan N. A., Vaychikauskas M. A. Rasshirenie kriptoshemy Rabina: algoritm otricaemogo shifrovaniya po otkrytomu klyuchu // Voprosy zaschity informacii. 2014. № 2. S. 12-16.
2.
3. Moldovyan N. A., Moldovyan A. A., Shcherbacov V. A. Provably Sender-Deniable Encryption Scheme // Proc. «The Third Conference of Mathematical Society of the Republic of Moldova» (IMCS-50). Chisinau, 19-23 Aug. 2014, Inst. Mathematics and Computer Science, Academy of Sciences of Moldova. 2014, P. 134-141.
4.
5. Canetti R., Dwork C., Naor M., Ostrovsky R. Deniable Encryption // Advances in Cryptology – CRYPTO 1997. Proc. P. 90-104.
6.
7. Ibrahim M. H. Receiver-Deniable Public-Key Encryption // Int. J. Network Security. 2009. Vol. 8, № 2. P. 159-165.
8.
9. Berezin A. N., Birichevskiy A. R., Moldovyan N. A., Ryzhkov A. V. Sposob otricaemogo shifrovaniya // Vopr. zaschity informacii. 2013. № 2. S. 18-21.
10.
11. Gordon J. Strong primes are easy to fi nd // Advances in cryptology – EUROCRYPT’84. Springer-Verlag LNCS. 1985. Vol. 209. P. 216-223.
12.
13. Kurosh A. G. Kurs vysshey algebry. – M.: Nauka, 1971. 431 s.
14.
15. Moldovyan N. A. Teoreticheskiy minimum i algoritmy cifrovoy podpisi. – SPb.: Peterburg-BHV, 2010. 304 s.
16.
17. Moldovyan N. A., Moldovyanu P. A. Vector form of the finite fi elds GF (pm) // Bull. Acad. de Stiinte a Republicii Moldova. Matematica. 2009. № 3. P. 57-63.
18.
19. ElGamal T. A public key cryptosystem and a signature scheme based on discrete logarithms // IEEE Transactions on Information Theory. 1985. Vol. IT-31, № 4. P. 469-472.
20.
21. Moldovyan N. A., Moldovyan A. A. Class of Provably Secure Information Authentication Systems // Springer Verlag CCIS 4th Int. Workshop MMM-ANCS’07 Proc. 13-15 Sept. 2007. 2007. Vol. 1. P. 147-152.
22.
23. Koutinho S. Vvedenie v teoriyu chisel. Algoritm RSA. – M.: Postmarket, 2001. – 323 s.
24.
25. Rabin M. O. Digitalized signatures and public key functions as intractable as factorization // Technical report MIT/LCS/TR-212, MIT Laboratory for Computer Sci. 1979.
26.
27. Moldovyan A. A., Moldovyan N. A., Shcherbakov V. A. Short signatures from diffi culty of the factoring problem // Bull. Acad. de Stiinte a Republicii Moldova. Matematica. 2013. № 2-3. P. 27-36.