University of Karbala
Russian Federation
Russian Federation
Purpose: the non-traction power supply system represents an innovative approach to providing electricity for rail transport. It is based on the use of wires installed above the rails to transfer electricity to trains. This method has a number of advantages that can be especially valuable in the conditions of Southern Iraq The article describes various strategies aimed at ensuring the availability of electricity in the Nasiriyah and Basra regions located in the southern part of Iraq by using a non-traction power supply system designed specifically for high-speed rail. In addition to describing the technical aspects of the aforementioned system, the document also examines its implications in terms of meeting the energy needs of the region. By analyzing the technical aspects and assessing the consequences, this article contributes to the discussion on the implementation of a non-traction power supply system in the region and sheds light on its potential to solve the urgent problem of electricity availability in the Nasiriyah and Basra regions. Methods: for the successful implementation of the power supply project, the researchers applied a modeling system created using the ETAR program. This powerful tool provides the ability to determine the values of the electric load consumed by electric trains and non-traction loads and simulate the operation of the entire electrical infrastructure with high accuracy. The results of the study provide valuable information about complex and standardized AC systems, as well as network load calculation systems for traction and non-traction distribution wires. Parctical importance: research makes it possible to optimize the operation of the system, providing highly efficient processing of electricity.
non-traction consumers, two wire-rail (DPR), traction power supply system, modeling of nontraction power supply, traction substations of alternating current
1. Manihal M. A. Estimation and Analysis of Demand Structure for the Rail Transport Sector in Iraq for the Period (1999–2016) // International Journal of Civil Engineering and Technology (IJCIET). 2019. Vol. 10, iss. 02. P. 424–445. URL: https://www.iaeme. com/ijciet/issues.asp?JType=IJCIET&VType=10&ITy pe=02 (accessed: 21.08.2023).
2. Mousavi S. M. G., Tabakhpour Adel L., Fuchs Ewald F. Power Quality Issues in Railway Electrification: A Comprehensive Perspective // IEEE Transactions on Industrial Electronics. 2014. Vol. 62, iss. 5. Available from: https://ieeexplore.ieee.org/document/7000530 (accessed: 21.08.2023).
3. Zakaryukin V. P., Kryukov A. V. Kachestvo elektroenergii v liniyah elektroperedachi «dva provoda — rel's rel's» // Elektrifikaciya transporta. 2014. № 7. S. 84–91.
4. Emcev A. N., Shumakov N. M., Fadeev V. A. Linii DPR elektrificirovannyh zheleznyh dorog kak istochnik pitaniya netyagovyh potrebiteley // Trudy Bratskogo gosudarstvennogo universiteta. Seriya: Estestvennye i inzhenernye nauki — razvitiyu regionov Sibiri. 2010. T. 2. S. 3–8.
5. Shevlyugin M. V., Alsultan M. D. D. Sovremennye principy proektirovaniya elektrifikacii Yuzhnoirakskih zheleznyh dorog // Vestnik SeveroKavkazskogo federal'nogo universiteta. 2024. № 6. S. 7–15.
6. Iraqi Republic Railways 2022 (IRR). URL: http:// iraq-jccme.jp/files/railway-projects-Iraq-rr25032022.pdf (accessed: 21.08.2023)
7. Bochev A. S., Finochenko T. E. Modernizaciya linii prodol'nogo elektrosnabzheniya «dva provoda — rel'sy» // Vestnik Rostovskogo gosudarstvennogo universiteta putey soobscheniya. 2006. № 4. S. 117–119.
8. Ustroystvo dlya elektrosnabzheniya netyagovyh potrebiteley elektrificirovannyh zheleznyh dorog: pat. 46979 U1, Ros. Federaciya / Ozhiganov N. V., Bochev A. S; zayavl. 04.04.2005; opubl. 08.10.2005. Byul. № 22. 11 s.
9. Semenova E. Yu. Prichina nedostovernosti ucheta potrebleniya elektroenergii na liniyah «dva provoda — rel's» prodol'nogo elektrosnabzheniya elektrificirovannogo transporta // Elektrichestvo. 2021. № 9. S. 67–72.
10. Application of ETAPTM ETRAXTM software package for digital simulation of distribution network that feeds an AC traction power supply system / V. Tulsky [at al.] // In collection: E3S Web of Conferences. Ser. ENERGY-21 — Sustainable Development and Smart Management. 2020. P. 07011.
11. Shevlyugin M. V., Scheglovitova E. V. Imitacionnaya model' sistemy tyagovogo elektrosnabzheniya zheleznyh dorog peremennogo toka dlya ocenki kachestva elektroenergii na vvodah podstanciy // Energobezopasnost' i energosberezhenie. 2023. № 1. S. 89–92.
12. Model' sovmeschennoy tyagovoy podstancii metropolitena s uchetom tyagovoy nagruzki i potrebiteley sobstvennyh nuzhd / L. M. Klyachko [i dr.] // Elektrotehnika. 2021. № 9. S. 22–25.
13. Cifrovaya model' tyagovoy podstancii dvuh rodov toka / M. V. Shevlyugin [i dr.] // Elektrotehnika. 2018. № 9. S. 40–44.
14. Shevlyugin M. V., Ermolenko D. V., Korolev A. A. Analiz vzaimnyh elektromagnitnyh vliyaniy mezhdu sistemoy tyagovogo elektrosnabzheniya i energosistemoy na edinoy cifrovoy modeli v programmnom komplekse ETAR // Aktual'nye voprosy razvitiya zheleznodorozhnogo transporta: materialy Vseros. nauch.-prakt. konf. k 75-letiyu aspirantury Nauchno-issledovatel'skogo instituta zheleznodorozhnogo transporta. 2019. S. 73–81.
15. Shevlyugin M. V. Energosberegayuschie tehnologii na zheleznodorozhnom transporte i metropolitenah, realizuemye s ispol'zovaniem nakopiteley energii: avtoref. diss. … dokt. tehn. nauk. M., 2013