Russian Federation
RUDN University
Russian Federation
Russian Federation
Russian Federation
Purpose: analysis of the possibility of using man-made waste to strengthen and stabilize the soils of road surfaces and the roadbed. The use of man-made waste in soil compositions reinforced with inorganic binders makes it possible to reduce the cost of construction and dispose of man-made waste. Objective: to review the available literature for a comprehensive understanding of the possibility of using man-made waste to strengthen and stabilize the soil. Results: the article discusses the ways of using various types of man-made waste to strengthen soils. The ash and slag wastes of the CHP are the most studied. Agricultural wastes such as coffee husk ash, bagasse ash, and cellulose are also of interest. At the same time, the available research has been carried out in rather narrow areas, there is not enough research in the field of assessing the durability of materials under the influence of various factors (moisture-drying, freezing-thawing, dynamic load from vehicles, accumulation of plastic deformations, etc.), there is not enough research in the field of assessing the impact of materials on the environment. Many studies have noted that some types of waste, such as rice husk ash, blast furnace slag and fly ash, need additional research in terms of increasing strength. Practical significance: this review can help in the creation of methods for strengthening and stabilizing soils that would be effective and durable while minimizing the impact of man-made waste on the environment. Additional research is needed to expand the scope of man-made waste in road construction, depending on the type of soil, the structural layer of the highway and the climatic conditions of the construction area.
soil strengthening, soil stabilization, man-made waste, reinforced soil compositions
1. Bezruk V. M. Ukreplenie gruntov v dorozhnom i aerodromnom stroitel'stve. M.: Transport, 1971. 247 s.
2. Filatov M. M. Osnovy dorozhnogo gruntovedeniya. M.: Gostransizdat, 1936. 233 s.
3. Informaciya o kolichestve tehnogennyh othodov. URL: https://ec.europa.eu/eurostat/statisticsexplained/ index.php?title=Waste_statistics#Total_ waste_generation (data obrascheniya: 15.07.2024).
4. Fabrication of superhydrophobic soil stabilizers derived from solid wastes applied for road construction: A review / J. Lu [at al.] // Transportation Geotechnics. 2023. P. 40. DOI:https://doi.org/10.1016/j.trgeo.2023.100974
5. A systematic review of strategies for identifying and stabilizing dispersive clay soils for sustainable infrastructure / A. H. Vakili [et al.] // Soil and Tillage Research. 2024. 239 r. DOI:https://doi.org/10.1016/j. still.2024.106036
6. Tanyıldızı M., Uz V. E., Gökalp İ. Utilization of waste materials in the stabilization of expansive pavement subgrade: An extensive review // Construction and Building Materials. 2023. 398 r. DOI:https://doi.org/10.1016/j. conbuildmat.2023.132435
7. Utilization of fly ash with and without secondary additives for stabilizing expansive soils: A review / S. Ahmad [et al.] // Results in Engineering. 2024. 22 r. DOI:https://doi.org/10.1016/j.rineng.2024.102079
8. Vijayan D. S., Parthiban D. Effect of Solid waste based stabilizing material for strengthening of Expansive soil: A review // Environmental Technology & Innovation. 2020. 20 r. DOI:https://doi.org/10.1016/j.eti.2020.101108
9. Sokornov A. A., Kon'kov A. N., Leykin A. P. Provedenie stabilometricheskih ispytaniy dispersnyh gruntov kak stroitel'nyh materialov // Putevoy navigator. 2021. № 46 (72). S. 28–36.
10. Optimizaciya granulometricheskogo sostava peschanogo grunta pri ustroystve osnovaniya dorozhnyh odezhd iz cementogrunta / S. A. Kuyukov [i dr.] // Putevoy navigator. 2021. № 46 (72). S. 44–52.
11. Semenova T. V., Dolgih G. V., Polugorodnik B. N. Primenenie kaliforniyskogo chisla nesuschey sposobnosti i dinamicheskogo konusnogo penetrometra dlya ocenki kachestva uplotneniya grunta // Vestnik SibADI. 2014. № 1 (35). S. 59–66.
12. Heukelom, W., Klomp, A. J. G. Dynamic Testing as a Means of Controlling Pavements During and After Construction // Proc. of 1st International Conference on Structural Design of Asphalt Pavements. 1962.
13. Green J. L., Hall J. W. Nondestructive Vibratory Testing of Airport Pavements. Vol. I: Experimental Test Results and Development of Evaluation Methodology and Procedure // Federal Aviation Administration Report No. FAA-RD-73-205-1. 1975. 214 r.
14. Witczak M. W., Qi X., Mirza M. W. Use of Nonlinear Subgrade Modulus in AASHTO Design Procedure // Journal of Transportation Engineering. 1995. No. 3. P. 273–282.
15. Suitability of Using California Bearing Ratio Test to Predict Resilient Modulus / B. Sukumaran [at al.] // Proceedings: Federal Aviation Administration Airport Technology Transfer Conference. 2002. 9 r.
16. Puppala A. J. Estimating Stiffness of Subgrade and Unbound Materials for Pavement Design // NCHRP Synthesis 382, Transportation Research Board, National Research Council. Washington, 2008. 139 r.
17. Munirwan R. P., Jaya R. P., Munirwansyah R. Performance of eggshell powder addition to clay soil for stabilization // Int. J. Recent Technol. Eng. 2019. No. 8. P. 532–535. DOI:https://doi.org/10.1016/j. conbuildmat.2021.123648
18. Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction / Renjith R. [at al.] // Journal of Cleaner Production. 2021. 294 r.
19. Lunev A. A. Obosnovanie raschetnyh znacheniy mehanicheskih harakteristik zoloshlakovyh smesey dlya proektirovaniya zemlyanogo polotna: diss. … kand. tehn. nauk. Omsk, 2019. 192 s.
20. Sirotyuk V. V. Osobennosti svoystv zolunosa Ekibastuzskih ugley v svyazi s ih primeneniem v dorozhnom stroitel'stve // Stroitel'stvo i ekspluataciya dorog: mezhvuz. sb. Novosibirsk: NISI, 1977. S. 78–86.
21. Sirotyuk V. V. Standartizaciya i perspektivy ispol'zovaniya zoloshlakov energetiki dlya dorozhnogo stroitel'stva v Rossii // Zoloshlaki TES: udalenie, transport, pererabotka, skladirovanie: mat-ly III nauch.-prakt. seminara (22–23 aprelya 2010 g.). M.: Izdatel'skiy dom MEI, 2010. S. 58–59.
22. Putilova I. V. Current state of the coal ash handling problem in Russia and abroad, aspects of the coal ash applications in hydrogen economy // International Journal of Hydrogen Energy. 2023. P. 31040–31048. DOI:https://doi.org/10.1016/j.ijhydene.2023.04.230
23. Effect of using Oil Shale Ash on geotechnical properties of cement-stabilized expansive soil for pavement applications / S.R. Rabab’ah [et al.] // Case Studies in Construction Materials. 2023. 19 r. DOI:https://doi.org/10.1016/j.cscm.2023.e02508
24. Primenenie zol i zoloshlakovyh othodov v stroitel'stve / N. I. Vatin [i dr.] // Magazine of Civil Engineering. 2011. № 4. S. 16–21. DOI: 10.5862/ MCE.22.2
25. Optimization of fly ash based soil stabilization using secondary admixtures for sustainable road construction / R. Renjith [at al.] // Journal of Cleaner Production. 2021. 294 r. DOI:https://doi.org/10.1016/j. jclepro.2021.126264.
26. Slobodchikova N. A., Lofler M., Plyuta K. V. Poluchenie neorganicheskogo vyazhuschego na osnove othodov promyshlennogo proizvodstva // Izvestiya vuzov. Investicii. Stroitel'stvo. Nedvizhimost': nauchnyy zhurnal. 2017. T. 7. № 2. S. 62–67.
27. Prognozirovanie prochnostnyh harakteristik ukreplennyh zoloshlakovyh smesey TEC neorganicheskimi vyazhuschimi materialami / Yu. G. Lazarev [i dr.] // Putevoy navigator. 2024. № 59 (85). S. 52–58.
28. Biryukov Yu. A., Biryukov A. N., Titeev I. S. Vtorichnye stroitel'nye materialy v transportnom stroitel'stve: analiz ih primeneniya i pererabotki pri rekonstrukcii ob'ektov // Stroitel'nye i dorozhnye mashiny. 2023. № 10. S. 51–62.
29. Slobodchikova N. A., Lofler M. Metodiki podbora sostavov gruntov, ukreplennyh izvest'yu, dlya dorozhnogo stroitel'stva // Izvestiya vuzov. Investicii. Stroitel'stvo. Nedvizhimost'. 2018. T. 8. № 2. S. 141–147.
30. Geotechnical and engineering properties of expansive clayey soil stabilized with biomass ash and nanomaterials for its application in structural road layers / J. L. Díaz-López [at al.] // Geomechanics for Energy and the Environment. 2023. 36 r. DOI:https://doi.org/10.1016/j.gete.2023.100496
31. Turkane S. D., Chouksey S. K. Design of low volume road pavement of stabilized low plastic soil using fly ash geopolymer // Materials Today: Proceedings. 2022. No. 65. Part 2. P. 1154–1160. DOI:https://doi.org/10.1016/j.matpr.2022.04.167
32. Stabilization of alluvial soil for subgrade using rice husk ash, sugarcane bagasse ash and cow dung ash for rural roads / A. K. Yadav [at al.] // International Journal of Pavement Research and Technology. 2017. No. 10. P. 254–261. DOI:https://doi.org/10.1016/j.ijprt.2017.02.001
33. Rahmat M. N., Kinuthia J. M. Effects of mellowing sulfate-bearing clay soil stabilized with wastepaper sludge ash for road construction // Engineering Geology. 2011. No. 117. P. 170–179. DOI:https://doi.org/10.1016/j.enggeo.2010.10.015.
34. Utilization of coffee husk ash for soil stabilization: A systematic review / R. P. Munirwan [at al.] // Physics and Chemistry of the Earth, Parts A/B/C. 2022. 128 r. DOI:https://doi.org/10.1016/j.pce.2022.103252. 35. Atahu M. K., Saathoff F., Gebissa A. Strength and compressibility behaviors of expansive soil treated with coffee husk ash // Journal of Rock Mechanics and Geotechnical Engineering. 2019. No. 11, iss. 2. P. 337– 348. DOI:https://doi.org/10.1016/j.jrmge.2018.11.004.
35. Dhawale A. W., Banne S. P. Laterite soil stabilization using cellulose biopolymer // Materials Today: Proceedings. 2023. DOI:https://doi.org/10.1016/j. matpr.2023.07.062
36. Remediation of expansive soils using agricultural waste bagasse ash / H. Hasan [at al.] // Procedia Eng. 2016. P. 1368–1375. DOI:https://doi.org/10.1016/j. proeng.2016.06.161
37. Stabilization of clayey soil using ultrafine palm oil fuel ash (POFA) and cement / S. Pourakbar [at al.] // Transportation Geotechnics. 2015. Vol. 3. P. 24– 35. DOI:https://doi.org/10.1016/j.trgeo.2015.01.002
38. Koohmishi M., Palassi M. Mechanical Properties of Clayey Soil Reinforced with PET Considering the Influence of Lime-Stabilization // Transportation Geotechnics. 2022. 33 r. DOI:https://doi.org/10.1016/j. trgeo.2022.10072