MACHINE LEARNING IN EMERGENCY MANAGEMENT: ANALYSIS AND METHODS
Abstract and keywords
Abstract (English):
This article focuses on fire research, disaster and hazard forecasting, risk and vulnerability assessment, early detection of disasters, early warning systems, disaster monitoring, damage assessment and post-disaster response, and case studies.

Keywords:
machine learning, deep learning, vector machine, clustering algorithm, local optimization algorithms, local optimization algorithms, stochastic algorithms
Text
Publication text (PDF): Read Download
References

1. Sun, W. Applications of Artificial Intelligence for Disaster Management / W. Sun, P. Bocchini, B.D. Davison // Natural Hazards. 2020. Vol. 103, Is. 3. Pp. 2631–2689. DOI: 10.1007/ s11069–020–04124–3.

2. Drakaki, M. Investigating the Impact of Site Management on Distress in Refugee Sites Using Fuzzy Cognitive Maps / M. Drakaki, P. Tzionas // International Journal of Disaster Risk Reduction. 2021. Vol. 60. Art. No. 102282. 15 p. DOI:https://doi.org/10.1016/j.ijdrr.2021.102282.

3. Drakaki, M. An Intelligent Multi-Agent Based Decision Support System for Refugee Settlement Siting / M. Drakaki, H.G. Gören, P. Tzionas // International Journal of Disaster Risk Reduction. 2018. Vol. 31. Pp. 576–588. DOI:https://doi.org/10.1016/j. ijdrr.2018.06.013.

4. Voropay, N. I. Integrirovannye intellektual'nye energeticheskie sistemy / N. I. Voropay, V. A. Stennikov // Izvestiya Rossiyskoy akademii nauk. Energetika. 2014. № 1. C. 64–73.

5. Galushkin, A. I. Neyronnye seti: osnovy teorii. — Moskva: Goryachaya liniya — Telekom, 2012. — 496 s.

6. Gafarov, F. M. Iskusstvennye neyronnye seti i ih prilozheniya: Uchebnoe posobie / F. M. Gafarov, A. F. Galimyanov. — Kazan': Izd-vo Kazanskogo un-ta, 2018. — 121 s.

Login or Create
* Forgot password?