CALCULATION OF COOLING TIME OF ABOVE-GROUND WATER PIPELINE WITH HEAT INSULATION UNDER CONDITIONS OF NEGATIVE TEMPERATURES
Abstract and keywords
Abstract (English):
Objective: transport infrastructure facilities include a variety of water supply systems. In the event of an emergency, after stopping the movement of water in the pipeline, it is cooled first, and then there is a risk of freezing and destruction of water pipelines. This work is devoted to the calculation of the cooling time of water in the above-ground water conduit with thermal insulation from the specified temperature value in the initial state to the freezing temperature. Methods: when building a mathematical model of the water cooling process, an approach is used based on averaging the equations of hydrodynamics by the volume of water in the pipeline and averaging the equations of thermal conductivity in the wall of the pipeline and in the layer of the heat insulator by the polar angle. To obtain a quasi-stationary form of equations, a comparative analysis of the rates of thermal processes in different layers of the water conduit is used. Results: a new mathematical model for cooling the water pipeline is formulated — a model of average temperatures. The applicability of the quasi-stationary form of the equations of the model is justified and its analytical solution is found. Explicit formulas are obtained for cooling time of water conduit as a function of its parameters. Cooling time was calculated in a wide range of parameters. The results of model calculations are compared with calculations according to traditional semi-empirical formulas. Practical importance: the formulas obtained in the work can be used to estimate the cooling time of water in an above-ground water pipeline with heat insulation to the freezing temperature in the case when the ambient temperature drops to negative values.

Keywords:
above-ground water pipeline, internal icing, freezing time, mathematical modeling, quasistationary approximation
Text
Text (PDF): Read Download
References

1. Terekhov L. D. Experimental study of soil thawing around shallow sewage pipelines in winter / L. D. Terekhov, S. B. Mayny, N. A. Shernikov // Water and Ecology. 2019. Iss. 4 (80). P. 71–78. DOI:https://doi.org/10.23968/2305- 3488.2019.24.4.71–78.

2. Kapinos O. G. Gidravlicheskie udary v napornyh truboprovodah pri nadzemnoy prokladke/ O. G. Kapinos, N. V. Tvardovskaya // Izvestiya Peterburgskogo universiteta putey soobscheniya. 2023. T. 20, vyp. 1. S. 79–90.

3. Zhidkih V. M. Ledovyy rezhim truboprovodov / V. M. Zhidkih, Yu. A. Popov. L.: Energiya, 1979. 132 s.

4. Cheng K. C. Freezing and melting heat transfer in engineering: Selected topics on ice-water systems and welding and casting processes / K. C. Cheng, N. Seki. New York: Hemisphere, 1991. 815 p.

5. Akyurt M. Freezing phenomena in ice-water systems / M. Akyurt, G. Zaki, B. Habeebullah // Energy Conversion and Management. 2002. Vol. 43. P. 1773– 1789.

6. Terehov L. D. Vnutrennee obledenenie vodovodov v zimniy period / L. D. Terehov, N. V. Tvardovskaya, E. A. Tvardovskaya // III Betankurovskiy mezhdunarodnyy inzhenernyy forum: sbornik trudov, Sankt-Peterburg, 2–3 dekabrya 2021 goda. SPb.: FGBOU VO PGUPS, 2021. T. 2. S. 161–164.

7. Sologubenko O. Wall damage of cylindrical heat pipes caused by water freezing / O. Sologubenko, D. Torresin, A. W. Petrov, et al. // Applied Thermal Engineering. 2023. Vol. 232. R. 120986. https://doi. org/10.1016/j.applthermaleng.2023.120986.

8. Gilpin R. R. Cooling of a horizontal cylinder of water through its maximum density point at 4°C / R. R. Gilpin // International Journal of Heat and Mass Ris. 2. Zavisimost' vremeni ohlazhdeniya vody v truboprovode ts ot ego radiusa R1 pri razlichnyh znacheniyah tolschiny sloya teploizolyacii δ: 1 — 2 sm, 2 — 5 sm, 3 — 10 sm, 4 — 15 sm, 5 — 20 sm. Nachal'naya temperatura vody T0 = 10 ℃, temperatura naruzhnogo vozduha Tex = ‒30 ℃, — dannye [18] Transfer. 1975. Vol. 18, iss. 11. P. 1307–1315. DOI:https://doi.org/10.1016/0017–9310(75)90241–0.

9. Alawadhi E. M. Cooling process of water in a horizontal circular enclosure subjected to non-uniform boundary conditions // Energy. 2011. Vol. 36, iss. 1. P. 586–594. DOI:https://doi.org/10.1016/j.energy.2010.10.001.

10. McDonald A. Mathematical simulation of the freezing time of water in small diameter pipes / A. Mc Donald, B. Bschaden, E. Sullivan, et al. // Applied Thermal Engineering. 2014. Vol. 73 (1). P. 142–153.

11. Hongfei Xu. Modelling ice and wax formation in a pipeline in the Arctic environment / Hongfei Xu., Dali Huang, Yue Sun, et al. // Journal of Loss Prevention in the Process Industries. 2020. Vol. 66. P. 104197.

12. Lapshin V. F. Raschet vremeni promerzaniya nadzemnogo vodovoda v usloviyah otricatel'nyh temperatur // Izvestiya Peterburgskogo universiteta putey soobscheniya. 2023. T. 20, № 3. S. 740–750.

13. Landau L. D. Teoreticheskaya fizika: Uchebnoe posobie. V 10 t. T. VI. Gidrodinamika / L. D. Landau, E. M. Lifshic. M.: Nauka, 1986. 736 s.

14. Lapshin V. F. Analiz processov teploobmena na poverhnosti nadzemnogo truboprovoda s teploizolyaciey // Byulleten' rezul'tatov nauchnyh issledovaniy. 2023. Vyp. 3. S. 147–156. DOI:https://doi.org/10.20295/2223–9987–2023–3–147–156.

15. Lykov A. V. Teoriya teploprovodnosti. M.: Vysshaya shkola, 1967. 600 s.

16. GOST 21880–2011. Maty iz mineral'noy vaty proshivnye teploizolyacionnye; red. V. N. Kopysov. M.: Standartinform, 2012. 10 s.

17. Fizicheskie velichiny: Spravochnik; pod red. I. S. Grigor'eva, E. Z. Meylihova. M.: Energoatomizdat, 1991. 1232 s.

18. Terehov L. D. Tehnologicheskie osnovy energosberezheniya pri podache vody po vodovodam na Severe: special'nost' 05.23.04: «Vodosnabzhenie, kanalizaciya, stroitel'nye sistemy ohrany vodnyh resursov»: dis. … d-ra tehn. nauk. Habarovsk: Dal'nevostochnyy gosudarstvennyy universitet putey soobscheniya, 1999. 275 s.

Login or Create
* Forgot password?