DEVELOPMENT OF A METHODOLOGY FOR DETERMINING THE PARAMETERS OF THE TRANSFORMATION OF COORDINATE SYSTEMS BASED ON THE FIRST-ORDER NONLINEAR PROGRAMMING METHOD WHEN ACCOMPANYING THE CONSTRUCTION OF BUILDINGS AND STRUCTURES
Abstract and keywords
Abstract (English):
Objective: to analyze the advantages and disadvantages of existing nonlinear programming methods for solving problems of coordinate system transformation (SC). To consider the need to convert the coordinates of points from local SC to urban. To determine the possibility of using the generalized reduced gradient method to transform the coordinates of points located both at a distance between points of about 150 m and at a distance of about 1.5 km. Methods: the theoretical foundations of this method are revealed. Information is provided on the procedure for performing transformations of coordinate systems. The algorithm of the generalized reduced gradient (OPG) method is given. A study has been conducted on the transformation of coordinate systems of starting points from SK1 to SK2 using the OPG method. The requirement for the value of the mean square error (SQR) of determining the position of the starting points when converting them from one coordinate system to another is justified. Results: a check was performed on the possibility of applying the obtained transformation parameters to recalculate the coordinates of points from the local SC to the city SC. Based on the verification of the obtained transformation parameters, the possibility of using them to recalculate the coordinates of points located at a distance of about 1,5 km was revealed. The need for additional research on the application of the generalized reduced gradient method to solve coordinate system transformation problems has been identified. Practical significance: the necessity of transformation of coordinate systems in the field of construction of buildings and structures is shown. The possibility of applying the generalized reduced gradient method to transform coordinate systems is presented. Using this method will allow you to convert the coordinates of the starting points from the local coordinate system to the coordinate system of the city with geodetic support for the construction of buildings and structures of various categories.

Keywords:
transformation of coordinate systems, transformation parameters, nonlinear programming, gradient methods, OPG method
Text
Publication text (PDF): Read Download
References

1. Kupriyanov A. O. Preobrazovaniya koordinat pri proektirovanii protyazhennyh ob'ektov // Perspektivy nauki i obrazovaniya. 2016. № 1 (19). S. 53– 57. EDN TQJRIU.

2. Shevchenko G. G. Razrabotka tehnologii geodezicheskogo monitoringa zdaniy i sooruzheniy sposobom svobodnogo stancionirovaniya s ispol'zovaniem poiskovogo metoda nelineynogo programmirovaniya: avtoref. ... kand. tehn. nauk. SPb., 2020. 22 s.

3. Shevchenko G., Gura D., Moskvina P. Threedimensional cadastre in creating an information base for a spatial model of a real estate object / E3S Web of Conferences: Topical Problems of Green Architecture, Civil and Environmental Engineering, TPACEE 2019, Moscow, November, 20–22, 2019.

4. Sharafutdinova A. A. Metodika proektirovaniya i postroeniya geodezicheskoy seti pri nazemnom lazernom skanirovanii krupnyh promyshlennyh ob'ektov / A. A. Sharafutdinova, M. Ya. Bryn' // Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologiy). 2022. T. 27, № 2. S. 72–85. DOI:https://doi.org/10.33764/2411- 1759-2022-27-2-72-85. EDN ZOVJUU.

5. Shendrik N. K. Metodika opredeleniya soglasuyuschih parametrov Gel'merta dlya lokal'nyh territoriy // Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologiy). 2021. T. 26, № 5. S. 63–74. DOI:https://doi.org/10.33764/2411-1759- 2021-26-5-63-74. EDN JKUXTK.

6. Shevchenko G. G., Bryn' M. Ya. Naumova N. A. Psevdoobraschenie matric poiskovym metodom nelineynogo programmirovaniya pri uravnivanii svobodnyh geodezicheskih setey // Geodeziya i kartografiya. 2023. № 1. S. 20–28. DOI:https://doi.org/10.22389/00167126-2023-991-1-20-28.

7. Eliseeva N. N., Zubov A. V., Gusev V. N. Primenenie metodov poiskovoy optimizacii pri reshenii geodezicheskih zadach // Izv. vyssh. ucheb. zavedeniy. Geodeziya i aerofotos'emka. 2020. T. 64, № 5. S. 491–498. EDN RBIZAJ

8. Cherkas L. A. Optimizaciya kachestva postroeniya geodezicheskih setey metodami nelineynogo programmirovaniya / L. A. Cherkas, E. V. Grischenkov // Vestnik Polockogo gosudarstvennogo universiteta. Seriya B: Prikladnye nauki. 2006. № 9. S. 117–120. EDN VKETZZ.

9. Agibalov O. I. Optimizaciya mnogomernyh zadach na osnove kombinirovaniya determinirovannyh i stohasticheskih algoritmov // Sovremennye naukoemkie tehnologii. 2017. № 9. S. 7–11. EDN ZRRRML.

10. Shevchenko G. G. Ispol'zovanie poiskovyh metodov dlya uravnivaniya i ocenki tochnosti elementarnyh geodezicheskih postroeniy // Geodeziya i kartografiya. 2019. T. 80, № 10. S. 10–20. DOI:https://doi.org/10.22389/0016-7126-2019-952-10-10-20.

11. Wilke D. N. The application of gradient-only optimization methods for problems discretized using non-constant methods // Structural and Multidisciplinary Optimization. 2010. 40 (1–6). P. 433–451.

12. Pyle L. Duane. A Simplex Algorithm — Gradient Projection Method for Nonlinear Programming. Department of Computer Science Technical Reports [Electronic resource]. URL: https://docs.lib.purdue.edu/ cstech/469 (date of the application: 25.05.2022).

13. Fiakko A., Mak-Kormik G. Nelineynoe programmirovanie. Metody posledovatel'noy bezuslovnoy minimizacii. M.: Mir, 1972. 240 s. 14. Nesterov Yu. Gradient methods for minimizing composite functions / Mathematical Programming. 2013. 140 (1). R. 125–161.

14. Torrisi G., Grammatico S., Smith R. S., et al. A Projected Gradient and Constraint Linearization Method for Nonlinear Model Predictive Control / SIAM J. Control. Optim. 2018. P. 1968–1999.

15. Metody optimal'nyh resheniy. Nelineynoe programmirovanie. Metodicheskie ukazaniya dlya vypolneniya laboratornyh rabot / Sankt-Peterburgskiy gornyy universitet. Sost.: V. V. Belyaev, A. V. Chirgin. SPb., 2021. 46 s.

16. Nevolin A. G. K voprosu o vliyanii oshibok ishodnyh dannyh na tochnost' opredeleniya geometricheskih parametrov tehnologicheskogo oborudovaniya / A. G. Nevolin, T. M. Medvedskaya // Vestnik SGUGiT (Sibirskogo gosudarstvennogo universiteta geosistem i tehnologiy). 2019. T. 24, № 1. S. 16–27. DOI:https://doi.org/10.33764/2411-1759-2019-24-1-16-27. EDN GQAXYL.

Login or Create
* Forgot password?