Purpose: Theoretical study of gas density distribution around the planet given self-gravity. Methods: Proposed in this paper equations for the planet gaseous envelope density with corresponding boundary conditions are solved analytically and numerically by Runge-Kutta method. Results: For the first time, the analysis of numerical solution of equations for all the space where the planet gravitational influence prevails - in the distance range from the planet surface till Hill radius - has been pursued using similarity method. Near the planet, the solution coincides with classical barometric formula, at intermediary distances, - with barometric formula which takes into consideration the dependence of free fall acceleration from the distance till the planet, at large distances, - with the dependence of density for singular isothermal gas sphere due to self-gravity. Practical significance: On the basis of the solution obtained, the unified picture of the planet gaseous envelope density distribution was analyzed. The results presented in the paper can be useful both for university physics professors and for the researchers involved in astrophysics.
The planet gaseous environment, self-gravity, barometric formula, Poisson equation, gas density in gaseous accumulations, Hill radius
1. Berberan-Santos M. N. On the Barometric Formula / M. N. Berberan-Santos, E. N. Bodunov, L. Pogliani // Amer. J. Phys. - 1997. - Vol. 65. - P. 404. - DOI:https://doi.org/10.1119/1.18555.
2. Landau L. D. Statistical Physics / L. D. Landau, E. M. Lifshiz. - Pergamon Press, 1969. - Vol. 5. - P. 108.
3. Berberan-Santos M. N. Liquid - Vapor Equilibrium in a Gravitational Field / M. N. Berberan-Santos, E. N. Bodunov, L. Pogliani // Amer. J. Phys. - 2002. - Vol. 70. - P. 438. DOI:https://doi.org/10.1119/1.1424264.
4. Berberan-Santos M. N. On the Barometric Formula inside the Earth / M. N. Berberan-Santos, E. N. Bodunov, L. Pogliani // J. Math. Chem. - 2010. - Vol. 47. - P. 990. - DOI:https://doi.org/10.1007/s10910-009-9620-7.
5. Rodrigues D. S. Analyzing Atmospheric Pressure Variations in Time and Height: a Didactic Proposal Employing a Smartphone Barometer / D. S. Rodrigues, F. J. Arnold // Revista Brasileira de Ensino de Física. - 2022. - Vol. 44. - P. e20210422. - DOI:https://doi.org/10.1590/1806-9126-RBEF-2021-0422.
6. Sliško J. The Physical Cause of Atmospheric Pressure: Weight of Air or Molecular Motion and Impacts? / J. Sliško, T. M. Topalović, M. Božić // The Physics Teacher. - 2021. - Vol. 59. - P. 470. - DOI:https://doi.org/10.1119/10.0006132.
7. Bodunov E. N. Barometric Formula for Non-Isothermal Atmosphere / E. N. Bodunov, G. G. Khokhlov // J. Phys.: Conf. Ser. - 2021. - Vol. 2131. - P. 022053. - DOI:https://doi.org/10.1088/1742-6596/2131/2/022053.
8. Wang J. Improving the Vertical Modeling of Tropospheric Delay / J. Wang, K. Balidakis, F. Zus et al. // Geophys. Research Lett. - 2022. - Vol. 49(5). - P. e2021GL096732. - DOI:https://doi.org/10.1029/2021GL096732.
9. Michalak P. Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance / P. Michalak // Energies. - 2022. - Vol. 15(9). - P. 3215. - DOI:https://doi.org/10.3390/en15093215.
10. Stenner C. Development and Persistence of Hazardous Atmospheres in a Glaciovolcanic Cave System - Mount Rainier, Washington, USA. / C. Stenner, A. Pflitsch, L. J. Florea et al. // J. Cave & Karst Studies. - 2022. - Vol. 84(2). - P. 66. - DOI:https://doi.org/10.4311/2021ex0102.
11. Chkeir S. Nowcasting extreme rain and extreme wind speed with machine learning techniques applied to different input datasets / S. Chkeir, A. Anesiadou, A. Mascitelli et al. // Atmospheric Research. - 2023. - Vol. 282. - P. 106548. - DOI:https://doi.org/10.1016/j.atmosres.2022.106548.
12. Dubinov A. E. Mathematical Tricks for Pseudopotentials in the Theories of Nonlinear Waves in Plasmas / A. E. Dubinov // Physics of Plasmas. - 2022. - Vol. 29. - P. 020901. - DOI:https://doi.org/10.1063/5.0078573.
13. Dubinov A. E. Barometric Formula for Ultrarelativistic Degenerate Fermi-Gases / A. E. Dubinov // Astrophysics. - 2020. - Vol. 63(4). - P. 580. - DOI:https://doi.org/10.1007/s10511-020-09660-1.
14. Moon J. Design of Air-cooled Waste Heat Removal System with String Type Direct Contact Heat Exchanger and Investigation of Oil Film Instability / J. Moon, Y. H. Jeong, Y. Addad // Nuclear Engineering and Technology. - 2020. - Vol. 52(4). - P. 734. - DOI:https://doi.org/10.1016/j.net.2019.10.010.
15. Shu F. N. The Physics of Astrophysics / F. N. Chu. - California: Univer. Sci. Books, 1992. - Vol. II - P. 246.
16. Tkachenko R. V. Gravitacionnaya neustoychivost' gazopylevyh okoloyadernyh diskov blizkih galaktik / R. V. Tkachenko, V. I. Korchagin, B. B. Zhmaylov. // Vestnik Sankt-Peterburgskogo universiteta. Matematika. Mehanika. Astronomiya. - 2022. - T. 9(67). - № 3. - S. 561. - DOI:https://doi.org/10.21638/spbu01.2022.316.
17. Patra N. N. Theoretical modelling of two-component molecular discs in spiral galaxies / N. N. Patra // Astronomy & Astrophysics. - 2020. - Vol. 638. - P. A66. - DOI:https://doi.org/10.1051/0004-6361/201936483.
18. Bodmer D. Asymptotic tracking position control with active oscillation damping of a multibody Mars vehicle using two artificial augmentation approaches / D. Bodmer, M. Krenmayr, F. Holzapfel // CEAS Space J. - 2022. - Vol. 14. - P. 125. - DOI:https://doi.org/10.1007/s12567-021-00364-6.
19. Teyler R. Stroenie i evolyuciya zvezd / R. Teyler. - M.: Mir, 1973. - 276 s.
20. Mizuno H. Formation of the Giant Planets / H. Mizuno // Progress of Theoretical Physics. - 1980. - Vol. 64(2). - P. 544. - DOI:https://doi.org/10.1143/PTP.64.544.
21. Semenov A. O. Upper Thermal Boundary Layer of Planetary Atmosphere: An Attempt of Developing a General Model / A. O. Semenov, G. M. Shved // Icarus. - 2008. - Vol. 194(1). - P. 290. - DOI:https://doi.org/10.1016/j.icarus.2007.08.040.
22. Shved G. M. The Standard Problem of Nonlocal Thermodynamic Equilibrium Radiative Transfer in the Rovibrational Band of the Planetary Atmosphere / G. M. Shved, A. O. Semenov // Solar System Research. - 2001. - Vol. 35. - P. 212. - DOI:https://doi.org/10.1023/A:1010478906172.
23. Bodenheimer P. Calculations of the Accretion and Evolution of Giant Planets: The Effects of Solid Cores / P. Bodenheimer, J. B. Pollack // Icarus. - 1986. - Vol. 67(3). - P. 391. - DOI:https://doi.org/10.1016/0019-1035(86)90122-3.
24. Pečnik B. Giant Planet Formation. A First Classification of Isothermal Protoplanetary Equilibria / B. Pečnik, G. Wuchterl // Astronomy & Astrophysics. - 2005. - Vol. 440. - P. 1183. - DOI:https://doi.org/10.1051/0004-6361:200500005.