PROBLEMS OF RADIATION ENERGY FLUX MEASUREMENT AT TRANSPORT INFRASTRUCTURE FACILITIES WITH RADIATING PLASMA
Abstract and keywords
Abstract (English):
Purpose: Transport infrastructure objects comprise numerous technical devices containing radiating plasma. They include visible and spectral radiation sources, switching devices at traction substations, high-temperature heat exchangers and combustion chambers. During experimental study of such devices, the measurements of power and spectral composition of radiation emitted by plasma are carried out. For this, as a rule, photodiodes of small sizes are used, installed at a certain distance from plasma formation. The purpose of the present work is to establish relationship between plasma emission power and radiation flux amount incident on photodiode working surface. Methods: To solve the set task, the method of direct integration of radiation transfer equation in homogeneous plasma structure assumption, but in the absence of local thermodynamic equilibrium presence assumption, is used. The cases of reflecting and absorbing surfaces, limiting a plasma, are considered. Results: Explicit expressions are found for radiation flux which exits plasma formation surface and for flux incident on photodiode surface. The dependence for the ratio of the values of these radiation fluxes to plasma geometric sizes and optical thickness is numerically studied. For the case of reflecting surfaces that bound plasma, simple asymptotic expression is found for ratio value for the fluxes and applicability field of the expression is determined. Practical significance: The ratios, which establish relationship between plasma radiation power and power value for radiation flux incident on photodiode working surface, make it possible to solve the main task of the experimental study of plasma formations — the restoration of plasma characteristics according to photocurrent measurement results. Obtained in the work results can be used at experimental study of technical devices containing emitting plasma.

Keywords:
Measurement of radiation flux, radiating plasma, radiative transfer equation
Text
Text (PDF): Read Download
References

1. Rayzer Yu. P. Fizika gazovogo razryada / Yu. P. Rayzer. - Dolgoprudnyy: Izdatel'skiy Dom «Intellekt», 2009. - 736 s.

2. Lapshin V. F. Eco-friendly sun lamp for railway facilities / V. F. Lapshin // J. Phys.: Conf. Ser. - 2021. - Vol. 2131(4). - P. 042092.

3. Zabello K. K. Anode Surface State and Anode Temperature Distribution after Current Zero for Different AMF-Contact Systems / K. K. Zabello, I. N. Poluyanova, A. A. Logachev et al. // IEEE Trans. Plasma Sci. - 2019. - Vol. 47. - № 8(1). - Pp. 3563-3571.

4. Logachev A. A. Cathode Surface State and Cathode Temperature Distribution after Current Zero of Different AMF-Contacts / A. A. Logachev, I. N. Poluyanova, K. K. Zabello et al. // IEEE Trans. Plasma Sci. - 2019. - Vol. 47. - № 8(1). - Pp. 3516-3524.

5. Wang L. J. Simulation results of influence of constricted arc column on anode deformation and melting pool swirl in vacuum arcs with AMF contacts / L. J. Wang, X. Zhang, X. Huang et al. // Phys. Plasmas. - 2017. - Vol. 24(11). - R. 113511

6. Li T. Simulation of Electric Arc Characteristics Based on MATLAB/Simulink / T. Li, H. Li // IOP Conf. Ser.: Mater. Sci. Eng. - 2018. - Vol. 452(4). - R. 042080.

7. Litvinova V. V. Stochastic model of thermal processes in the contact network at arc discharges occurring at high speeds of movement / V. V. Litvinova, V. I. Moiseev, E. V. Runev // CEUR Workshop Proceedings. - 2020. - Vol. 2803. - Pp. 84-91.

8. Poluyanova I. N. Measurements of Thermal Radiation Brightness of Anode Surface After Current Zero for a Range of Current Levels / I. N. Poluyanova, K. K. Zabello, A. A. Logatchev et al. // IEEE Trans. Plasma Sci. - 2017. - Vol. 45. - № 8(2). - Pp. 2119-2125.

9. Barinov Yu. A. Moschnost' izlucheniya sil'notochnoy vakuumnoy dugi, stabilizirovannoy aksial'nym magnitnym polem, v vidimoy i ul'trafioletovoy oblastyah spektra / Yu. A. Barinov, K. K. Zabello, A. A. Logachev i dr. // Pis'ma v ZhTF. - 2021. - T. 47. - Vyp.3. - S. 18-20

10. Lapshin V. F. Radiative heat transfer in plasma of pulsed high pressure caesium discharge / V. F. Lapshin // J. Phys.: Conf. Ser. - 2016. - Vol. 669. - P. 012035.

11. Zel'dovich Ya. B. Fizika udarnyh voln i vysokotemperaturnyh gidrodinamicheskih yavleniy / Ya. B. Zel'dovich, Yu. P. Rayzer. - M.: Fizmatlit, 2008. - 656 s.

12. Abaszadeh M. Analysis of radiative heat transfer in two-dimensional irregular geometries by developed immersed boundary-lattice Boltzmann method / M. Abaszadeh, A. Safavinejad, A.A. Delouei et al. // JQSRT. - 2022. - Vol. 280. - P. 108086.

13. Baksht F. G. Modeling of the Plasma Waveguide on the Basis of the Pulse-Periodic High-Pressure Cesium Discharge / F.G. Baksht, V.F. Lapshin // Plasma Phys. Rep. - 2020. - Vol. 46. - Pp. 846-849.

14. Loginov A. V. Radiative Constants in the W VII Ion Spectrum / A. V. Loginov, V. I. Nikitchenko // Optics and Spectroscopy. - 2020. - Vol. 128(8). - Pp. 1078-1081.

Login or Create
* Forgot password?