Russian Federation
Russian Federation
Russian Federation
Purpose: To obtain analytical dependencies for the optimal allocation of resources of various type recovery trains with the purpose to restore in the shortest possible timeframes of railway facilities destroyed as a result of regional emergences. Methods: A heuristic method of optimal resource allocation of various type recovery trains through railway facilities, destroyed as a result of a regional emergences, is applied. Proof of the optimality of the proposed heuristic method is given. Results: Within the proposed method frames, new analytical dependencies are derived for the distribution of resources of recovery trains of various types through railway facilities destroyed as a result of regional emergences. Mathematical formulation, based on the formulation of non-linear model of operations research theory, as well as solution algorithm of the task for the distribution of resources of recovery trains of various types through railway facilities destroyed as a result of emergences of a regional scale are given. Practical significance: On the basis of the considered dependencies, it is possible to increase the efficiency of calculation operativeness allowing to embody reasonable allocation of recovery trains of various types for the restoration of railway facilities destroyed as a result of regional emergences. The results of the study can be applied to the creation of informational-predicted systems that promptly implement the proposed analytical dependencies for more efficient restoration of railway facilities destroyed as a result of emergences of a regional importance.
Resources of recovery trains of various types, model for resource allocation of recovery trains of various types, algorithm for resource allocation, dynamics of recovery train arrival, technologies for performing operation on railway facilities
1. Vilkov V. B. The choice of an optimal methodology for the retraining organization of psychologists based on the use of mathematical methods / V. B. Vilkov, O. I. Shcherbakova, A. K. Chernykh et al. // Espacios. - 2018. - Vol. 39. - № 20. - P. 16.
2. Vilkov V. B. Zadachi na grafah s nechetko zadannymi vesami: monografiya / V. B. Vilkov, A. K. Chernyh, A. V. Flegontov. - SPb.: Izd. RGPU im A. I. Gercena, 2018. - 160 s.
3. Chernyh A. K. Teoreticheskie polozheniya modelirovaniya raspredeleniya sil i sredstv vnutrennih voysk po sluzhebno-boevym zadacham / A. K. Chernyh // Mezhdisciplinarnye issledovaniya v sfere integracii obrazovaniya i nauki. sbornik nauchnyh trudov nauchno-pedagogicheskogo sostava Sankt-Peterburgskogo voennogo instituta vnutrennih voysk MVD Rossii. - SPb., 2014. - S. 151-155.
4. Hu T. Celochislennoe programmirovanie i potoki v setyah / T. Hu. - M.: Mir, 1974. - 519 s.
5. Vagner G. Osnovy issledovaniya operaciy / G. Vagner. - M.: Mir, 1972. - T. 1. - 335 s.
6. Vagner G. Osnovy issledovaniya operaciy / G. Vagner. - M.: Mir, 1972. - T. 2. - 340 s.
7. Vilkov VB. Primenenie metodov optimizacii pri vyrabotke resheniy v obuchenii kursantov v obrazovatel'nyh organizaciyah silovyh struktur / V. B. Vilkov, L. V. Bol'shakova, A. K. Chernyh i dr. // Vestnik Sankt-Peterburgskogo universiteta MVD Rossii. - 2017. - № 2(74). - S. 165-172.
8. Nechepurenko M. I. Algoritmy i resheniya zadach na grafah i setyah / M. I. Nechepurenko, V. K. Popkov; pod red. M. I. Nechepurenko. - M.: Nauka, 1990. - 513 s.
9. Mihalevich V. S. Metody posledovatel'noy optimizacii v diskretnyh setevyh zadachah raspredeleniya resursov / V. S. Mihalevich, A. I. Kuksa. - M.: Nauka, 1983. - 207 s.
10. Lozhechnikov G. A. Organizaciya vosstanovleniya zheleznyh dorog: uchebnik / G. A. Lozhechnikov, A. S. Nizov, D. I. Popov. - SPb.: VA MTO, 2014. - 302 s.
11. Grigor'ev B. M. Organizaciya vosstanovleniya mostov na zheleznyh dorogah: uchebnoe posobie / B. M. Grigor'ev. - SPb.: VTU ZhDV, 2005. - Ch. 1. - 302 s.
12. Issledovanie operaciy: v 2 t. T. 1 / pod red. D. Moudera, S. Elmagrabi. - M.: Mir, 1981. - 712 s.
13. Bellman R. Dinamicheskoe programmirovanie i sovremennaya teoriya upravleniya / R. Bellman, R. Kalaba. - M.: Nauka, 1969. - 120 s.