Russian Federation
Russian Federation
Purpose: Efficiency increase of operational monitoring of technical state of gas-air tract (GAT) of a locomotive diesel, assessment of possibility of using locomotive regular measuring tools to monitor diesel GAT technical state; feasibility justification for expanding the list of GAT parameters that are monitored by locomotive board diagnostics. Methods: An intelligent classifier based on Support Vector Machine (SVM) algorithm is used to determine the current technical condition (TC) class of GAT. Training sample of 96 item volume for eight classes of GAT TC was formed using “Diesel-RK” software complex. Classifier structure three variants were studied, differing in the set of input parameter vector components: regular, with two inputs (pressure increase degree in a supercharger and exhaust gas temperature before a turbine), expanded, with additional control of turbocharger rotor rotation speed, and proposed, with control of air instantaneous consumption by a diesel instead. Model quality was assessed by cross-validation on five fragments and by classification results for test sample which wasn’t used while training. Results: Classification accuracy of testing sample by classifier with input parameter regular set doesn’t exceed 41%. The expansion of being controlled list of parameter on account of inclusion therein of turbocharger rotor rotation speed does not noticeably affect diagnostic system efficiency, increasing diagnostic accuracy only till 43%. At the same time, rotor rotation speed replacement with air instantaneous consumption rises testing sample classification accuracy till 91%. Practical significance: The effectiveness of the use of machine learning methods for operative monitoring of diesel GAT technical state at condition of optimization of the list of diesel parameters, controlled by locomotive board diagnostics tools, is confirmed. With the purpose to increase control efficiency it is recommended to include diesel instantaneous air consumption into the list with parallel exclusion from their of a turbocharger rotor rotation frequency.
Gas-air tract, turbocharger, baffle, supercharger, working process, diesel, diagnosis, technical state, classifier, learning sample, transducer, air consumption
1. Svechnikov, A.A. Sovershenstvovanie tehnologii kontrolya tehnicheskogo sostoyaniya agregatov nadduva teplovoznogo dizelya posle remonta: 05.22.07: avtoreferat dissertacii na soiskanie uchenoy stepeni kandidata tehnicheskih nauk:/Svechnikov Andrey Aleksandrovich. - Samara, 2010. - 24 s. - Tekst: neposredstvennyy.
2. Titanakov, D.A. Ocenka tehnicheskogo sostoyaniya gazovozdushnogo trakta teplovoznyh dizeley: 05.22.07: avtoreferat dissertacii na soiskanie uchenoy stepeni kandidata tehnicheskih nauk:/Titanakov Denis Aleksandrovich. - Omsk, 2005. - 20 s. - Tekst: neposredstvennyy.
3. Vasin, P.A. Issledovanie gazovozdushnogo trakta chetyrehtaktnogo vysokooborotnogo dizelya s turbonadduvom kak ob'ekta avtomaticheskoy bezrazbornoy diagnostiki: 05.04.02: avtoreferat dissertacii na soiskanie uchenoy stepeni kandidata tehnicheskih nauk:/Vasin Petr Aleksandrovich: - Leningrad, 1984. - 23 s. - Tekst: neposredstvennyy.
4. Lobanov, I.I. Povyshenie ekspluatacionnoy effektivnosti teplovoznyh dizeley primeneniem sredstv operativnoy diagnostiki: 05.22.07: avtoreferat dissertacii na soiskanie uchenoy stepeni kandidata tehnicheskih nauk: / Lobanov Ivan Igorevich. - Moskva, 2017. - 23 s. - Tekst: neposredstvennyy.
5. Kompleks diagnostiki i nastroyki dizeley KDN «MAGISTRAL'»: sayt / OOO «Tehtrans-D». - Sankt-Petereburg, 2022. - URL: https://tehtrans-d.ru (data obrascheniya 13.04.2022). - Rezhim dostupa: svobodnyy. - Tekst: elektronnyy.
6. Kuleshov A.S. Programma rascheta i optimizacii dvigateley vnutrennego sgoraniya DIZEL'-RK. Opisanie matematicheskih modeley, reshenie optimizacionnyh zadach. M., MGTU im. Baumana, 2004. - 123 s., il. - Tekst: neposredstvennyy.
7. Cherezov, D.S. Obzor osnovnyh metodov klassifikacii i klasterizacii dannyh / D.S.Cherezov, N.A.Tyukachev//Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: sistemnyy analiz i informacionnye tehnologii. - Voronezh, 2009, №9. - s.25-29.
8. Fedotov, M.V. Prediktivnaya analitika tehnicheskogo sostoyaniya sistem teplovozov s ispol'zovaniem neyrosetevyh prognoznyh modeley/M.V.Fedotov, V.V.Grachev. - Tekst: neposredstvennyy // Byulleten' rezul'tatov nauchnyh issledovaniy. - Sankt-Peterburg, 2021. - № 3. - s. 102-115.
9. Metod opornyh vektorov dlya standartnoy zadachi klassifikacii:/URL: www.machine learning.ru /wiki/images/2/25/SMAIS11_SVM.pdf (data obrascheniya 14.04.2022) - Rezhim dostupa: svobodnyy. - Tekst elektronnyy.
10. Termokomplekt dizel'nyy TKD-50M: sayt/OOO «Neva-Dizel'». - Sankt-Peterburg, 2022. - URL: http://neva-diesel.com/mkd-50m-termodizelnyy-komplekt (data obrascheniya 14.04.2022). - Rezhim dostupa: svobodnyy. - Test: elektronnyy.
11. Vybor metriki v mashinnom obuchenii. Kak vybrat' metriki dlya validacii rezul'tata Machine Learning: [Elektronnyy resurs]// Rezhim dostupa: sayt OOO «Datalytica» - Moskva, 2022. - URL: http://blog.datalytica.ru/2018/05/blog-post.html (data obrascheniya 14.04.2022) - Rezhim dostupa: svobodnyy. - Tekst: elektronnyy.
12. Grachev, V.V. Preskriptivnyy kontrol' energoeffektivnosti teplovoza s ispol'zovaniem intellektual'nyh metodov obrabotki izmeritel'noy informacii. Monografiya/V.V.Grachev//SPb: izdatel'stvo Peterburgskiy gosudarstvennyy universitet putey soobscheniya Imperatora Aleksandra I. - 2019. - 105 s.: Ill. - Tekst: neposredstvennyy.
13. Termoanemometr TTM-2-04; sayt OOO «Orbital'». - Sankt-Peterburg, 2022. URL: http://www.orbitalspb.ru/parametri_sredi/ termoanemometry/anemometr_TTM2 -04_portativnyi (data obrascheniya 14.04.2022) - Rezhim dostupa: svobodnyy. - Tekst: neposredstvennyy.