Russian Federation
Russian Federation
UDC 004.94
The study puts froth an innovative approach for calculating braking distances and block-section lengths taking into consideration both design and operational standards, as well as the necessity to adjust block-section boundaries to optimize signal visibility and equipment positioning. This research is grounded on an analysis of track profile data, train movement parameters, relevant regulatory documents, and results from simulation. A method is suggested for establishing the lengths of automatic block sections under various scenarios of boundary rearrangement and travel movement directions, ensuring that the total length of block sections equals the distance between stations. The technology enables the calculation of block section lengths under standard conditions and when the equipment is relocated, all while maintaining compliance with safety regulations. The findings provide essential scientific and technical support for the design and implementation of train traffic control systems.
tractive effort calculations; train movement parameters; speed limitations; speed reduction mode; speed reduction distance; train length; headway control
1. Kokurin I. M. Tehnologiya opredeleniya dlin fiksiro- vannyh blok-uchastkov / I. M. Kokurin, I. A. Pushkin // Avtomatika, svyaz', informatika. — 2022. — № 10. — S. 9–14. — DOI:https://doi.org/10.34649/AT.2022.10.10.002.
2. Vlasenko S. V. Railway Signalling & Interlocking: interna- tional Compendium / S. V. Vlasenko. — 2nd edition. — Hamburg: PMC Media House GmbH, 2018. — 456 p.
3. Kokurin J. M. Technological Foundations of Traffic Controller Data Support Automation / J. M. Kokurin, D. V. Efanov // 2019 IEEE East-West Design and Test Symposium (EWDTS 2019), Batumi, 13–16 sentyabrya 2019 goda. — Batumi, 2019. — P. 8884410. — DOI:https://doi.org/10.1109/EWDTS.2019.8884410.
4. Aleksandrov A. E. Ispol'zovanie imitacionnoy siste- my ISTRA dlya modelirovaniya grafika dvizheniya poez- dov / A. E. Aleksandrov, A. V. Shipulin // Transport Urala. — 2011. — № 4(31). — S. 67–71. — EDN OOMTWD.
5. Kokurin I. M. Tehnologicheskie osnovy innovacionnoy sistemy avtomaticheskogo upravleniya dvizheniem poez- dov / I. M. Kokurin, D. V. Efanov // Avtomatika, svyaz', informatika. — 2019. — № 5. — S. 19–23. — DOI:https://doi.org/10.34649/AT.2019.5.5.003.
6. Rozenberg E. N. Sovremennye sistemy upravleniya dvi- zheniem poezdov: otechestvennyy i zarubezhnyy opyt / E. N. Rozenberg, E. E. Shuhina, A. V. Ozerov, V. M. Mali- nov. — M.: Izdatel'skie resheniya, 2020. — 210 s.
7. Hintze P. “But that’s not the kilometre in the plan!” — the potential of georeferenced railway infrastructure data / P. Hintze, F. Pruter // Signal+Draht. — 2018. — Ausgabe 11. — Pp. 6–15.
8. Pan D. On Intelligent Automatic Train Control of Railway Moving Automatic Block Systems Based on Multi-Agent Systems / D. Pan, Y. Zheng, C. Zhang // Proceedings of the 29th Chinese Control Conference, Beijing, China, 29–31 July 2010. — Pp. 4471–4476.
9. Kokurin I. M. Kognitivnyy metod dlya resheniya zadach interval'nogo regulirovaniya dvizheniya poezdov / I. M. Kokurin, I. A. Pushkin // Transport Rossii: pro- blemy i perspektivy — 2020: materialy Yubileynoy mezhdunarodnoy nauchno-prakticheskoy konferencii, Sankt-Peterburg, 10–11 noyabrya 2020 goda. — CPb.: Institut problem transporta im. N. S. Solomenko RAN, 2020. — T. 2. — S. 18–27.



