Russian Federation
Purpose: to develop a simulation model of local time scale synchronization at telecommunication network node by using precision time protocol (PTP) assuming that packets are transmitting through optical transport network (OTN). To form a sequence of stages for periodical local clock correction taking into account the local clock drift. To get probabilistic-temporal parameters of this process for evaluating the achievable accuracy. To formulate suggestions for improving the accuracy in view of received parameters and by using more effective mechanisms of synchronization signal transmitting. Methods: comparison of current and perspective mechanisms of synchronization signal transmitting through OTN layer tha can be founded in standards, analyzing of technical documentation and experimental data for generating initial data using in model, simulation modeling with the point of view multi-agent method. Results: the simulation model of local time scale synchronization with the periodical drift correction is developed. The probabilistic-temporal parameters of synchronization message transmitting are received and elements that influence achievable accuracy are obtained. A number of recommendations for its improving is formulated. Practical importance: the simulation results can be implemented for designing transport networks based on OTN and for upgrading current transport networks in a way of implementing OTN with the point of view to provide network synchronization for each attached network and to work correctly with the synchronization information. Also received probabilistic-temporal parameters can be used for modeling at network layer taking into account more complex OTN topologies.
network synchronization, frequency-time provision, OTN, local time scale synchronization, PTP, clock drift
1. Interfaces for the optical transport network, Rec. ITU-T G.709/Y.1331 Amd. 3. International Telecommunication Union, Geneva, Switzerland.
2. The control of jitter and wander within the optical transport network (OTN), Rec. ITU-T G.8251. International Telecommunication Union, Geneva, Switzerland, Nov. 2022.
3. Ryzhkov A. V. Chastotno-vremennoe obespechenie v setyah elektrosvyazi: ucheb. posobie dlya vuzov. M.: Goryachaya liniya — Telekom, 2018. 270 s.
4. IEEE standard for a precision clock synchronization protocol for networked measurement and control systems amendment 1: Precision time protocol (PTP) mapping for transport over the optical transport network (OTN). IEEE standard 1588b-2022, 2022.
5. Generic framing procedure, Rec. ITU-T G.7041/Y.1303 Amd. 1. International Telecommunication Union, Geneva, Switzerland.
6. An enhanced time synchronization method for a network based on Kalman filtering / Q. Li [et al] // Sci Rep. 2024. № 14. Art no. 21271. DOI:https://doi.org/10.1038/s41598- 024-71929-8
7. Minimax optimum estimators for phase synchronization in IEEE 1588 / A. Guruswamy [et al]. IEEE Transactions on Communications. Vol. 63. № 9. P. 3350–3362. DOI:https://doi.org/10.1561/2000000108
8. Karthik A. K., Blum R. S. Recent advances in Clock synchronization for packet-switched networks // Foundations and trends in signal processing. 2020. Vol. 13, No. 4. P. 360–443. DOI:https://doi.org/10.1561/2000000108
9. White paper: Timestamping and clock Synchronization in P4-Programmable Platforms / T. Martinek [et al.] // GEANT. 2022. URL: https:// resources.geant.org/wp content/uploads/2022/09/ GN4-3_White-Paper_Timestamping-and-Clock- Synchronisation-in-P4-Programmable-Platforms.pdf
10. Salifov I. I. Metodika ocenki skvoznoy zaderzhki na opticheskoy magistral'noy seti so slozhnoy arhitekturoy: diss. … kand. tehn. nauk. Ekaterinburg, 2012. 253 s.
11. Bogdanova E. G. Opticheskaya marshrutizaciya v transportnoy seti IMT-2020/5G // Pervaya milya. 2020. № 1. S. 62–70.
12. Hmelev K. F. Osnovy fotonnogo transporta. Kiev: Tehnika, 2008. 680 s.
13. WDM/OTN Latency, Shenzhen, China, Huawei. URL: https://info.support.huawei.com/network/ptmngsys/ Web/WDMkg/en/43_latency.html
14. Modelirovanie processa obrabotki metok vremeni na ustroystvah transportnoy seti / A. K. Kanaev [i dr.] // Trudy uchebnyh zavedeniy svyazi. 2024. T. 10. № 2. S. 34–47. DOI:https://doi.org/10.31854/1813- 324X-2024-10-2-34-47
15. Huang Y., Mehrotra S., Li J. A hybrid FECARQ protocol for low-delay lossless sequential data streaming // Proc. IEEE International Conference on Multimedia and Expo ICME 2009. P. 718–725.