Russian Federation
Russian Federation
To verify the mathematical model of the interstation and station subway tunnels junctionsection by creating a physical model using the method of equivalent materials. To analyze the formation of vertical loads from ground pressure on the tunnel linings, taking into account the selected sequence of work. To establish the station tunnel and its face wall influence on the interstation tunnel lining stressstrain state, and determine the size of this area of influence based on the simulation results. Methods: the finite element method in combination with the analytical method (mathematical modeling), the method of equivalent materials (physical modeling). Results: patterns of load distribution from vertical ground pressure on the interstation tunnel lining at the interface with the deep shallow pylon station have been revealed. It was found that on the approach to the face wall of the station, the interstation tunnel lining perceives the vertical load from the ground pressure, exceeding the load on the lining outside the area of the station influence by about 2–4 times. In addition, it was found that the initial deformations of the station workings lead to an increase in the load on the interstation tunnel. Thus, it is rational to forecast the load from the ground pressure on the interstation tunnel lining, taking into account the initial deformations of the station workings. It is established that the boundary of the station tunnel influence area on the stress-strain state of the interstation tunnel lining practically does not depend on the depth of laying and can be assumed to be 7 m. Practical significance: the results of the study can be used at the design stage of the interstation and station tunnel junction to determine the length of the interstation tunnel section with reinforced lining.
finite element method, equivalent materials method, subway, interstation tunnel, station tunnel
1. Modelirovanie proyavleniy gornogo davleniya / G. N. Kuznecov [i dr.]. Leningrad: Nedra, 1968. 280 s.
2. Huang G., Qiu W., Zhang H. Numerical simulation of mechanism behavior of the horizontal stratum tunnel adopting 3 Dimensional Element Code (3DEC) // Underground — the way to the future! World Tunnel Congress. Geneva, 2013. P. 830–835.
3. Hwang Ch. H., Jung Ch. G., Lee S. D. Behaviour of the cut-and-cover tunnel in unsymmetrical condition // World Tunnel Congress “Safe Tunnelling for the City and for the Environment”. The 35th ITA-AITES general assembly. Hungary, 2009.
4. Frolov Yu. S., Kon'kov A. N., Larionov A. A. Reshenie zadach geomehaniki metodom fizicheskogo modelirovaniya pri stroitel'stve metropolitena v Sankt-Peterburge // Promyshlennoe i grazhdanskoe stroitel'stvo. 2013. № 9. C. 71–73.
5. Frolov Y. S., Konkov A. N., Larionov Frolov A. A. Scientific substantiation of constructivetechnological parameters of St. Petersburg subway underground structures // Transportation Geotechnics and Geoecology, TGG 2017 (17–19 May 2017). Saint Petersburg, 2017. P. 673–680.
6. Dong K. K., Bum J. O., Lee S.-D. Optimal pillar width of twin tunnels in horizontal jointed rock // World Tunnel Congress “Safe Tunnelling for the City and for the Environment”. The 35th ITA-AITES general assembly. Hungary, 2009.
7. Kim H.-M., Lee S.-D. Load on pillar and block displacement during two-arch tunnel excavation in jointed rock mass // World Tunnel Congress “Safe Tunnelling for the City and for the Environment”. The 35th ITA-AITES general assembly. Hungary, 2009.
8. A study of the invert tunnel’s behavior in a weathered-rock using laboratory model test and numerical analysis / K. J. Kim [at al.] // Underground Space — the 4th Dimension of Metropolises. Barták, Hrdina, Romancov & Zlámal, 2007. P. 501–506.
9. Loads on the center pillar of two-arch tunnel under the influence of discontinuity planes in the ground // S. D. Lee [at al.] // Underground Space — the 4th Dimension of Metropolises. Barták, Hrdina, Romancov & Zlámal, 2007. P. 533–537.
10. Structural forces in segmental linings: processoriented tunnel advance simulations vs. conventional structural analysis / A. Marwan [at al.] // Tunnelling and Underground Space Technology. 2021. Vol. 111.
11. Study on Mechanical Behavior and the Model Test of Segmental Linings for the Shield Tunnel Undercrossing the Yellow River / Y. Fang [at al.] // Procedia Engineering. 2016. Vol. 166. P. 19–31.
12. Simulating tunnel support integrity using FEM and FDEM based on laboratory test data / H. Johnson [at al.] // Tunnelling and Underground Space Technology. 2021. Vol. 111.
13. Study on the long-term performance of cementsodium silicate grout and its impact on segment lining structure in synchronous backfill grouting of shield tunnels / Sh. Wang [at al.] // Tunnelling and Underground Space Technology. 2019. Vol. 92.
14. Minimum cover depth estimation for underwater shield tunnels / G. Panpan [at al.] // Tunnelling and Underground Space Technology. 2021. Vol. 115.
15. Analysis of ground surface settlement induced by the construction of mechanized twin tunnels in soilrock mass mixed ground / Z. Zhong [at al.] // Tunnelling and Underground Space Technology. 2021. Vol. 110.
16. Kon'kov A. N., Sokornov A. A. Analiz rezul'tatov matematicheskogo modelirovaniya tyubingovyh tonnel'nyh obdelok pri ispol'zovanii privedenyh secheniy // III Betankurovskiy mezhdunarodnyy inzhenernyy forum: sbornik trudov: v 2 t. SPb.: PGUPS, 2021. T. 1. S. 207–209.
17. Konkov A. N., Sokornov A. A., Korolev K. V. The results analysis of the tubing tunnel facing mathematical modeling using the reduced sections // International Scientific Siberian Transport Forum TransSiberia 2021. Lecture Notes in Networks and Systems. Vol. 402. Springer, Cham, 2022. Vol. 1. P. 568–576.
18. Sokornov A. A., Kon'kov A. N. Modelirovanie prohodki tonnelya glubokogo zalozheniya v metode konechnyh elementov // Putevoy navigator. 2022. № 50 (76). S. 36–44.
19. Kulagin N. I. Issledovanie racional'nyh metodov sooruzheniya odnosvodchatyh stanciy metropolitena v proterozoyskih glinah: diss. … kand. tehn. nauk. Leningrad: LGI, 1977.
20. Bezrodnyy K. P. Issledovanie osobennostey staticheskoy raboty elementov konstrukcii odnosvodchatyh stanciy metropolitena v proterozoyskoy gline: diss. … kand. tehn. nauk. Leningrad: LGI, 1978.
21. Demenkov P. A. Geomehanicheskoe obosnovanie metoda rascheta nagruzok na stancii kolonnogo tipa metropolitena glubokogo zalozheniya: diss. … kand. tehn. nauk. SPb.: SPbGGI, 2004.22. Sokornov A. A., Shaposhnikov E. A., Konkov A. N. Laboratory test of equivalent material as artificial ground // E3S Web Conf. Vol. 157. Key Trends i Transportation Innovation (KTTI-2019), 2020.
22. Sokornov A. A., Shaposhnikov E. A., Kon'kov A. N. Laboratornye ispytaniya iskusstvennyh gruntov // Putevoy navigator. 2019. № 41 (67). S. 49–55.
23. Opredelenie dobavochnogo davleniya na podzemnye sooruzheniya metropolitena ot nazemnogo stroitel'stva / A. A. Sokornov [i dr.] // Putevoynavigator. 2020. № 42 (68). S. 36–41.