Russian Federation
Emperor Alexander I Petersburg State Transport University (Departament of Railway Cars, Associate Professor)
Russian Federation
Russian Federation
UDK 620.169.1 Испытания на срок службы (долговечность) в целом
Purpose: traffic safety is a priority goal for the railway industry. The existing problem of cracks periodically detected during operation in the structures of flat cars requires new approaches to the theoretical and practical assessment of the fatigue resistance and crack resistance of their structures. The problem of crack formation under low temperature conditions is of particular relevance. Methods: an experimental method has been developed for determining the spectrum of vertical loading of platform cars for transporting containers and the spectrum of longitudinal loads for cars operating in areas with low temperatures has been substantiated; a method for assessing crack resistance based on stress extrema determined experimentally has been proposed. The method is based on the principles of fracture mechanics, which take into account the influence of negative temperatures. Results: based on the stress extremes in the design of extendedlength platform cars, determined on the basis of the proposed method, it was established that it is possible to use one well-founded scheme that maximally loads all zones of the car as a test scheme for experimental assessment of fatigue resistance indicators under vertical and longitudinal loads. Using the proposed method, it is possible to determine the size of an acceptable crack-like defect based on the conditions of the initial crack growth. Stress intensity factors obtained on the basis of experimentally determined stress extrema showed that in the design of flatcars of increased length for transporting containers, crack growth is possible at subzero temperatures, which is not consistent with the methodology for assessing fatigue strength of the GOST 33211-2014 standard. Practical significance: the proposed method for assessing the spectrum of vertical loading of flatcars of increased length for the transportation of containers allows, from a variety of options for car loading schemes, to select one scheme for testing, which maximally loads all its potentially dangerous zones. Some research results were used to develop a standard test method for fatigue resistance of extended-length flat cars.
flat cars, fatigue resistance safety factor, crack resistance, load spectrum
1. Kogaev V. P., Mahutov N. A., Gusenkov A. P Raschety detaley mashin i konstrukciy na prochnost' i dolgovechnost': spravochnik. M.: Mashinostroenie, 1985. 224 s.
2. Bityutsky A. A. Analysis of supporting body structure freight cars fatigue resistance estimation methods development // Research of fatigue resistance bonds and data selection of new freight cars characteristics / ed. by A. A. Bitiutskiy; Railcar-building Engineering Center. Edition 7. St. Petersburg: OMPress, 2009. P. 6–13.
3. Myl'nikov V. V. Vliyanie chastoty nagruzheniya na ustalost' konstrukcionnyh materialov // Nauka i tehnika. 2019. T. 18, № 5. S. 427–435.
4. Fatigue resistance changes of structural steels at different load spectra / V. V. Myl’nikov [et al.] // Steel in translation. 2019. Vol. 49, No. 10. P. 678– 682.
5. Bespal'ko S. V., Kozlov M. P. Kompleksnyy podhod k ocenke parametrov pogloschayuschih apparatov avtoscepnogo oborudovaniya podvizhnogo sostava zheleznyh dorog // Sovremennye problemy zheleznodorozhnogo transporta: sb. tr. po rezul'tatam mezhdunar. internet-konf. (Moskva, Problematika transportnyh sistem 7 aprelya 2020 goda) / pod obsch. red. K. A. Sergeeva. M.: Rossiyskiy universitet transporta, 2020. S. 192–195.
6. Mahutov N. A. Deformacionnye kriterii razrusheniya i raschet elementov konstrukciy na prochnost'. M.: Mashinostroenie, 1981. 272 s.
7. Matvienko Yu. G. Uproschennyy veroyatnostnyy metod ocenki koefficientov zapasa (bezopasnosti) po treschinostoykosti // Problemy mashinostroeniya i nadezhnosti mashin. 2021. № 3. S. 22–30.
8. Matvienko Yu. G. The simplified approach for estimating probabilistic safety factors in fracture mechanics // Eng. Fail. Anal. 2020. Vol. 117. Art. 104814.
9. Sokolov S. A., Grachev A. A., Vasil'ev I. A. Analiz prochnosti elementa konstrukcii s treschinoy v usloviyah otricatel'nyh klimaticheskih temperatur // Vestnik mashinostroeniya. 2019. № 11. S. 42–46.
10. Vadholm T. Investigation of low temperature toughness and crack initiation in welded structural steels. Norwegian University of Science and Technology, 2014.
11. Morozov E. M., Muyzemnek A. Yu., Shadskiy A.S. ANSYS v rukah inzhenera: mehanika razrusheniya. Izd. 2-e, ispr. M.: LENAND, 2010. 456 s.
12. Zaynullin R. S., Harisov R. A., Muhametzyanov A. N. Ocenka vliyaniya nizkih temperatur na treschinostoykost' staley, primenyaemyh v neftegazovoy otrasli // Neftyanoe hozyaystvo. 2017. № 10. S. 116–119.
13. Ignatiev M. O., Petrov Y. V., Kazarinov N. A. Simulation of dynamic crack initiation based on the peridynamic numerical model and the incubation time criterion // Technical Physics. 2021. No. 66(3). P. 422–425.
14. Ignatev M., Kazarinov N., Petrov Y. Peridynamic modelling of the dynamic crack initiation // Procedia Structural Integrity. 2020. No. 28. P. 1650–1654
15. Smirnov V. I. Fracture assessment diagram for solid with circular crack subjected to concentrated forces // Materials Physics and Mechanics. 2017. No. 31(1–2). P. 71–74.
16. Vagony-platformy uvelichennoy dliny. Tipovaya metodika ispytaniy na soprotivlenie ustalosti, utv. 05.05.2023 zamestitelem general'nogo direktora — glavnym inzhenerom OAO «RZhD» A. M. Hramcovym.