Abstract and keywords
Abstract (English):
Purpose: to make an analytical review of the existing literature and systematization by purpose in various eras of existence for tower structures, as well as to highlight the achievements of mankind in the development of steel lattice towers used as supports for radio-electronic equipment over the past 130 years. Methods: the method of analytical review of the evolution of tower structures from the initial stages of the development of society was used with a description of the vectors of development and expediency of the construction of these structures, followed by the conclusion of modern trends, especially aimed at the development of steel tower structures used for the support of radio equipment. Results: various review and analytical studies have been analyzed, which allow us to draw conclusions about the use of structures in the past and identify the global vector of development of tower structures in various cultures; a comprehensive assessment, analysis and formalization of information presented in the form of a concise overview was carried out, in addition, a comprehensive analysis of the development of steel lattice towers in domestic science of the USSR period was carried out, and modern trends in the development of steel lattice towers were reflected. The result of this work is a generalization of world and national research aimed at accumulating knowledge about the origin and vectors of future trends in the development of tower structures. Practical significance: the accumulation and analysis of existing knowledge about the history of the development of tower structures and their purpose in human economic and household activities in various epochs has been carried out. A systematic series of modern trends in the development of steel tower structures used as supports for radio-technical equipment is presented in order to determine the direction of future research.

Keywords:
antenna-mast structures, steel lattice towers, the history of tower structures, the evolution of tower structures, tower structures
Text
Text (PDF): Read Download
References

1. Lloyd S., Wolfgang Müller H. Ancient architecture. Milano: Electa Editrice, 1986. 192 p.

2. Sokolova M. V. Bashni: istoricheskiy ekskurs // Sovremennye problemy servisa i turizma. 2013. № 3. S. 9–17.

3. Bromiley G. W. International Standard Bible Encyclopedia: A‒D. Michigan: Wm. B. Eerdmans Publishing, 1995. 1006 p.

4. Pavlov N. L. Solnechnyy luch kak instrument proektirovaniya arhitekturnoy formy // Svetotehnika. 2018. № 6. S. 37–44.

5. Ru Zh. Velikie civilizacii Mezhdurech'ya. Drevnyaya Mesopotamiya: carstva Shumer, Akkad, Vaviloniya. M.: Centrpoligraf, 2016. 448 c.

6. Beaver P. A history of lighthouses. New Jersey: The Citadel Press Secaucus, 1973. 182 p.

7. Gamil'ton Tompson A. Angliyskiy zamok. Srednevekovaya oboronitel'naya arhitektura / per. s angl. A. L. Andreeva. M.: Centrpoligraf, 2011. 448 s.

8. Brokgauz F. A. Enciklopedicheskiy slovar': v 86 t. Repr. izd. SPb.: POLRADIS, 1993.

9. Zhavoronkov A. D. Stroitel'stvo krepostey pri Petre I // Skif. Voprosy studencheskoy nauki. 2022. № 8 (72). S. 206–219.

10. Erwin H., Fritz L. Towers: a historical survey. New-York: Rizzoli, 1989. 343 p.

11. Nasuhanov S. Sh. Osobennosti srednevekovoy bashennoy arhitektury chechencev // Perspektivy nauki. 2020. № 11 (134). S. 293–298.

12. Sheina S. G., Bataeva P. D., Bataeva H. M. Obzor opyta stroitel'stva, remonta i vosstanovleniya pamyatnikov istorii i kul'tury bashennogo tipa // Nauka, obrazovanie, innovacii: materialy I Mezhdunarodnogo nauchnogo simpoziuma studentov, aspirantov i molodyh uchenyh (Groznyy, 19 maya 2023 goda). Groznyy: Kompleksnyy nauchno-issledovatel'skiy institut im. H. I. Ibragimova RAN, 2023. S. 123–132.

13. Kaysarova Zh. E. Kul'turno-istoricheski posledstviya ispol'zovaniya vozobnovlyaemyh istochnikov energii v epohu Srednevekov'ya (v koncepcii L. Mamforda) // Vestnik Kazanskogo tehnologicheskogo universiteta. 2013. T. 16, № 2. S. 268–269.

14. Bol'shaya sovetskaya enciklopediya / gl. red. O. Yu. Shmidt. M.: Sovetskaya enciklopediya, 1926–1947.

15. Osnovy arhitektury i stroitel'nyh konstrukciy: uchebnik dlya vuzov / K. O. Larionova [i dr.]; pod obsch. red. A. K. Solov'eva. M.: Yurayt, 2024. 490 s.

16. Antonov V. V. Petropavlovskiy sobor // istoriko-kul'turnyy internet-portal «Enciklopediya Sankt-Peterburga » [Elektronnyy resurs]. URL: http://www.encspb.ru (data obrascheniya: 13.03.2024).

17. Bogolyubov A. N. Matematiki. Mehaniki: bibliogr. sprav. Kiev: Nauk. dumka, 1983. 639 s.

18. Smith B. W. Sommunication structures. London: Thomas Telford, 2007. 352 p.

19. Mishin V. P. Metallicheskie konstrukcii akademika V. G. Shuhova. M.: Nauka, 1990. 112 s.

20. Metallicheskie konstrukcii: uchebnik dlya studentov uchrezhdeniy vysshego professional'nogo obrazovaniya, obuchayuschihsya po napravleniyu «stroitel'stvo» / Yu. I. Kudishin [i dr.]; pod red. Yu. I. Kudishina. 13‑e izd., ispr. M.: Akademiya, 2011. 680 s.

21. Radioveschanie: proshloe, nastoyaschee, buduschee: materialy VI nauchnyh chteniy, posvyaschennyh Dnyu radio — prazdniku rabotnikov vseh otrasley svyazi (23 aprelya 2013 goda) / Central'nyy muzey svyazi im. A. S. Popova; otv. red. O. V. Frolova. SPb.: Central'nyy muzey svyazi im. A. S. Popova, 2013. 154 s.

22. Bryksenkov A. A. Istoriya razvitiya radiosvyazi na Severe (uroki istorii) // Polyarnye chteniya na ledokole «Krasin». 2018. № 5. S. 144–157.

23. 28 sentyabrya 2018 goda — 105 let so dnya otkrytiya (1913) pervoy na Severe radiotelegrafnoy stancii, raspolozhennoy vblizi Arhangel'ska (v 2 km ot stancii Isakogorka, na vysote 24 m nad urovnem morya) (15‑go — po st. st.) // EKB «Russkiy Sever» AONB im. N. A. Dobrolyubova [Elektronnyy resurs]. URL: https://ekb.aonb.ru (data obrascheniya: 19.03.2024).

24. Savickiy G. A. Vetrovaya nagruzka na sooruzheniya. M.: Stroyizdat, 1972. 111 s.

25. Kurs metallicheskih konstrukciy: utv. VKVSh v kachestve uchebnika dlya stroit. vuzov. M., Leningrad: Gosstroyizdat, 1940–1944 (Leningrad). T. 3, ch. 3: Metallicheskie konstrukcii special'nyh sooruzheniy / N. S. Streleckiy. M., 1944. 502 s.

26. Savickiy G. A. Osnovy rascheta radiomacht: statika i dinamika. M.: Svyaz'izdat, 1953. 276 s.

27. Belenya E. I. Predvaritel'no napryazhennye nesuschie metallicheskie konstrukcii / 2‑e izd., pererab. i dop. M.: Stroyizdat, 1975. 415 s.

28. Pavlovskiy V. F, Kondra M. P. Stal'nye bashni // Proektirovanie i montazh. Kiev: Budivel'nik, 1979. 200 s.

29. Yur'ev A. G., Klyuev S. V., Klyuev A. V. Osobennosti proektirovaniya vysotnyh sterzhnevyh konstrukciy iz stali // Vestn. Belgor. gos. tehnol. un-ta im. V. G. Shuhova. 2008. № 4. S. 42–45.

30. Metallicheskie konstrukcii: uchebnik dlya special'nosti «prom. i grazhd. stroitel'stvo» / N. S. Streleckiy [i dr.]; pod obsch. red. N. S. Streleckogo. 3‑e izd., pererab. M.: Gos stroyizdat, 1961. 776 s.

31. Ostroumov B. V. Issledovanie, razrabotka i vnedrenie vysotnyh sooruzheniy s gasi telyami kolebaniy: diss. … dokt. tehn. nauk. M., 2003. 48 s.

32. Perel'muter A. Vi. Zhili-byli. Kiev: Stal', 2002. 186 s.

33. Sokolov A. G. Opory liniy peredach (raschet i konstruirovanie). M.: Gosstroyizdat, 1961. 171 s.

34. Snitko N. K. Ustoychivost' sterzhnevyh sistem v uprugo-plasticheskoy oblasti. Leningrad: Stroyizdat, 1968. 248 s.

35. Shevchenko A. V. Racional'nye prostranstvennye sterzhnevye konstrukcii energeticheskogo stroitel'stva v sisteme avtomatizirovannogo proektirovaniya: diss. … kand. tehn. nauk. Makeevka, 1997. 24 s.

36. Radiotelevizionnye opory setchatoy konstrukcii // Prizmont-Metall [Elektronnyy resurs]. URL: https://prizmont.ru/ (data obrascheniya: 04.04.2024).

37. Setchataya bashnya: patent № 2178494 C1 Ros. Federaciya, MPK E04H 12/08. № 2001107720/03 / B. V. Ostroumov; zayavl. 26.03.2001, opubl. 20.01.2002. Zayavitel': AOZT «Central'nyy nauchno-issledovatel'skiy i proektnyy institut stroitel'nyh metallokonstrukciy im. Mel'nikova».

38. Badertdinov I. R. Trehgrannye reshetchatye konstrukcii: diss. … kand. tehn. nauk. Rostov-na-Donu, 2020. 21 s.

39. Sabitov L. S. Konstrukcii bashennyh sooruzheniy: diss. … dokt. tehn. nauk. Rostov-na-Donu, 2021. 38 s.

40. Szafran J., Juszczyk K., Kami’nski M. Reinforcements of tower structures: Efective and economic design engineering // Lightweight Structures in Civil Engineering. Contemp. Problems. Proceedings of XXIV LSCE 2018. Lodz: Łódź University of Technology, 2018. P. 126–133.

41. Diaconita A. I., Rusu L., Andrei G. A local perspective on wind energy potential in six reference sites on the western coast of the Black Sea considering five different types of wind turbines // Inventions. 2021. Vol. 6, no. 3. P. 44. DOI:https://doi.org/10.3390/inventions6030044.

42. Klyuev S. V. Optimal'noe proektirovanie konstrukciy bashennogo tipa: diss. ...\ kand. tehn. nauk. Belgorod, 2006. 21 s.

43. Ahtyamova L. Sh. Stal'nye bashni ponizhennoy metalloemkosti: diss. ... kand. tehn. nauk. Kazan', 2023. 23 s.

44. Chepurnenko A., Akhtyamova L., Ivashchenko I. Trihedral lattice towers optimization with a limitation on the resonant vortex excitation occurrence // Designs. 2023. Vol. 7, no. 1. P. 10. DOI:https://doi.org/10.3390/designs7010010.

45. Tsavdaridis K. D., Nicolaou A., Mistry A. D. Topology optimisation of lattice telecommunication tower and performance-based design considering wind and ice loads // Structures. 2020. Vol. 27. P. 2379–2399. DOI:https://doi.org/10.1016/j.istruc.2020.08.010.

46. Hofer P., Wehrle E. The influence of uncertain loading on topology-optimized designs // Mathematical Problems in Engineering. 2022. Vol. 2022. P. 6175979. DOI:https://doi.org/10.1155/2022/6175979.

47. Wind resistant size optimization of geometrically nonlinear lattice structures using a modified optimality criterion method / J.-Y. Fu [et al.] // Engineering Structures. 2018. Vol. 173. P. 573–588. DOI:https://doi.org/10.1016/j.engstruct.2018.07.017.

48. SNiP 2.01.07-85*. Nagruzki i vozdeystviya. Normy proektirovaniya. Gosstroy SSSR. M.: CITP Gosstroya SSSR, 1996. 36 s.

49. Nikitin P. N. Razrabotka i vnedrenie metodov rascheta vysotnyh metallicheskih konstrukciy na vozdeystvie poryvov vetra s vydeleniem kvazistaticheskoy i rezonansnoy sostavlyayuschih ih reakcii: avtoref. diss. ... kand. tehn. nauk. M., 2006. 31 s.

50. Karakozova A. I. Raschet sooruzheniy s nizkim konstrukcionnym dempfirovaniem i uchetom vozdeystviya pul'saciy skorosti vetra: avtoref. diss. ... kand. tehn. nauk. M., 2013. 19 s.

51. Zinnurov T. A. Ocenka nadezhnosti ekspluatiruemyh reshetchatyh bashennyh sooruzheniy metodom statisticheskogo modelirovaniya: avtoref. diss. ... kand. tehn. nauk. Kazan', 2013. 22 s.

52. Petrov A. A. Povyshenie nadezhnosti i effektivnosti protyazhennyh i kombinirovannyh metallokonstrukciy pri seysmicheskih i vetrovyh vozdeystviyah: avtoref. diss. ... kand. tehn. nauk. M., 1997. 56 s.

53. Xie Q., Zhang J. Experimental study on failure modes and retrofitting method of latticed transmission tower // Engineering Structures. 2021. Vol. 226. P. 111365. DOI:https://doi.org/10.1016/j.engstruct. 2020.111365.

54. Huang P., Chen S., Gu M. Field measurement and aeroelastic wind tunnel test of wind induced vibrations of Lattice Tower // The Structural Design of Tall and Special Buildings. 2019. DOI:https://doi.org/10.1002/tal.1622. transmission tower bodies under Skew Winds / D. Zhang [et al.] // Journal of Wind Engineering and Industrial Aerodynamics. 2021. Vol. 214. P. 104678. DOI:https://doi.org/10.1016/j.jweia.2021.104678.

55. Wind load investigation of self-supported lattice transmission tower based on wind tunnel tests / W. Zhang [et al.] // Engineering Structures. 2022. Vol. 252. P. 113575. DOI:https://doi.org/10.1016/j.engstruct. 2021.113575.

56. Research on wind load characteristics on the surface of a towering precast television tower with a grid structure based on large Eddy Simulation / R. Wu [et al.] // Buildings. 2022. Vol. 12, no. 9. P. 428. DOI:https://doi.org/10.3390/buildings12091428.

57. Failure criteria and wind-induced vibration analysis for an offshore platform jacking system / H.-N. Li [et al.] // International Journal of Structural Stability and Dynamics. 2021. P. 2150105. DOI:https://doi.org/10.1142/S0219455421501054.

58. A method for analyzing stability of tower-line system under strong winds / V. He [et al.] // Advances in Engineering Software. 2019. Vol. 127. P. 1–7. DOI:https://doi.org/10.1016/j.advengsoft.2018.10.004.

59. Dynamic analysis of self-supported Tower under Hurricane Wind Conditions / I. Fernández Lorenzo [et al.] // Journal of Wind Engineering and Industrial Aerodynamics. 2020. Vol. 197. P. 104078. DOI:https://doi.org/10.1016/j.jweia.2019.104078.

60. Quantification of the seismic behavior of a steel transmission tower subjected to single and repeated seismic excitations using vulnerability function and collapse margin ratio / M. M. Kassem [et al.] // Applied Sciences. 2022. Vol. 12, no. 4. P. 1984. DOI:https://doi.org/10.3390/app12041984.

61. Collapse failure analysis and fragility analysis of a transmission tower-line system subjected to the multidimensional ground motion of different input directions / L. Tian [et al.] // Structures. 2023. Vol. 48. P. 1018–1028. DOI:https://doi.org/10.1016/j.istruc.2023.01.042.

62. Fu Z., Tian L., Liu J. Seismic response and collapse analysis of a transmission tower-line system considering uncertainty factors // Journal of Constructional Steel Research. 2022. Vol. 189. P. 107094. DOI:https://doi.org/10.1016/j.jcsr.2021.107094.

63. Pan H., Li C., Tian L. Seismic fragility analysis of transmission towers considering effects of soil-structure interaction and depth-varying ground motion inputs // Bulletin of Earthquake Engineering. 2021. Vol. 19, no. 11. P. 4311–4337. DOI:https://doi.org/10.1007/s10518–021–01124‑x.

64. Li C., Pan H., Tian L. Seismic performance analyses of pile-supported transmission tower-line systems subjected to depth-varying spatial ground motions // Journal of Earthquake Engineering. 2022. P. 1–25. DOI:https://doi.org/10.1080/13632469.2022.2113000.

65. Uzel soedineniya trub: patent № 2288399 C8 Rossiyskaya Federaciya, MPK F16L 13/00, E04B 1/58. № 2005111480/06 / I. L. Kuznecov [i dr.]; zayavl. 07.04.2005: opubl. 27.11.2006. Zayavitel': Kazanskaya gosudarstvennaya arhitekturno-stroitel'naya akademiya.

66. Uzel soedineniya trub raznogo diametra: patent № 2620625 C1 Rossiyskaya Federaciya, MPK F16L 13/00. № 2016130488 / I. Z. Gatiyatov [i dr.]; zayavl. 25.07.2016: opubl. 29.05.2017.

67. Sabitov L. S. Razrabotka i issledovanie soedineniy stal'nyh trub raznogo diametra // Izvestiya Kazanskogo gosudarstvennogo arhitekturno stroitel'nogo universiteta. 2008. № 1 (9). S. 102–105.

68. Test and finite element analysis of a new type of double-limb double-plate connection joint in Narrow Base Tower / H. Yan [et al.] // Materials. 2021. Vol. 14, no. 20. P. 5936. DOI: 10.3390/ ma14205936.

69. Comparison of the influence of double-limb double-plate joint on the stability bearing capacity of triangular and quadrilateral transmission tower structures / T. Zhao [et al.] // Buildings. 2022. Vol. 12, no. 6. P. 784. DOI:https://doi.org/10.3390/buildings12060784.

70. Influence of double-limb double-plate connection on stable bearing capacity of quadrilateral transmission tower / T. Zhao [et al.] // Applied Sciences. 2021.Vol. 11, no. 24. P. 12024. DOI: 10.3390/ app112412024.

71. An L., Wu J., Jiang W. Experimental and numerical study of the axial stiffness of bolted joints in steel lattice transmission tower legs // Engineering Structures. 2019. Vol. 187. P. 490–503. DOI:https://doi.org/10.1016/j.engstruct.2019.02.070.

72. Experimental testing and evaluation of real-scale lap-splice bolted connections used in typical lattice steel transmission towers / A. M. Taha [et al.] // Thin-Walled Structures. 2022. Vol. 171. P. 108790. DOI:https://doi.org/10.1016/j.tws.2021.108790.

73. Experimental and numerical appraisal of steel joints integrated with single- and double-angles for transmission line towers / R. Ma [et al.] // Thin-Walled Structures. 2021. Vol. 164. P. 107833. DOI:https://doi.org/10.1016/j.tws.2021.107833.

Login or Create
* Forgot password?