Russian Federation
Russian Federation
Purpose: to identify the influence of the geometric parameters of wheel sets and rail track on the smoothness of the ride and the level of passenger comfort for an automated diagnostic system. Methods: statistical methods were used to conduct the research. Sampling and analysis of statistical observation data made it possible to identify existing approaches to assessing the levels of interaction of the wheel-rail system at different speeds. The track sections grouped into rows along pickets were assessed in terms of passenger ride comfort and equivalent conicity. Materials used in the public domain and official websites, as well as research by the authors. Results: a list of factors influencing the conditions of interaction between highspeed rolling stock and the railway track has been identified. Data were obtained for indicators of ride comfort and equivalent conicity for the St. Petersburg — Moscow line along pickets at actual realizable speeds. Practical importance: the possibility of using remote measurement diagnostics to determine the geometric parameters of wheelsets and rails and the geometric parameters of the rail track has been determined. Suggestions for improving the qualitative assessment of the interaction of the wheel-rail system are recommended.
comfort level, discomfort, passenger ride comfort, equivalent conicity, acceleration, wheel-rail interaction, wheelset, rail profile, diagnostic system
1. Vysokoskorostnye poezda «Sapsan» V1 i V2: uchebnoe posobie / N. Yu. Bogomolov [i dr.]; pod red A. V. Shiryaeva. M.: OAO «Rossiyskie zheleznye dorogi», 2013. 522 s.
2. Sistemy monitoringa sostoyaniya putevoy infrastruktury i komfortabel'nosti ezdy passazhirov «Aksioma»: rukovodstvo po ekspluatacii VDMA.663500.199 RE. 2018. 16 s.
3. Standart EN‑12299. Zheleznodorozhnyy transport. Komfortnye usloviya vo vremya dvizheniya passazhirskih poezdov. Izmerenie i ocenka / Evropeyskiy komitet po standartizacii (CEN). 2009. 67 s.
4. GOST 31191.1-2004 (ISO 2631-1:1997). Vibraciya i udar. Izmerenie obschey vibracii i ocenka ee vozdeystviya na cheloveka. Obschie trebovaniya. M., 2010. 24 s.
5. Gaponenko A. S. Diagnostika plavnosti hoda i urovnya komforta passazhirov na uchastkah obrascheniya skorostnyh poezdov // Put' i putevoe hozyaystvo. 2019. № 4. S. 8–12.
6. Gaponenko A. S. Sostoyanie puti i riski narusheniya plavnosti hoda poezdov // Put' i putevoe hozyaystvo. 2016. № 7. S. 23–26.
7. O prichinah avariynogo srabatyvaniya sistemy kontrolya ustoychivosti hoda vagonov EVS «Sapsan» / A. M. Brzhezovskiy [i dr.] // Vestnik VNIIZhTa. 2014. № 2. S. 13–22.
8. A multi-national survey of the contact geometry between wheels and rails / M. Zacher [et al.] // Proceedings of the Institution of Mechanical Engineers. Part F: Journal of Rail and Rapid Transit. 2015. Vol. 229, № 6. P. 691–709.
9. Research on Bogie Frame Lateral Instability of High-Speed Railway Vehicle / Ch. Wang [et al.] // Shock and Vibration. 2018. Vol. 5. P. 1–13.
10. Wu H., Kalay S. Management of the Wheel/Rail Contact Interface in Heavy-Haul Operations // Interface. The Journal of Wheel/Rail Interaction. 2013, October 18.
11. Ekvivalentnaya konusnost' i ee vliyanie na dvizhenie podvizhnogo sostava / A. A. Kiselev [i dr.] // Izvestiya PGUPS. SPb., 2017. T. 14, vyp. 2. S. 247–255.
12. Vliyanie geometricheskih parametrov zheleznodorozhnogo puti na velichinu ekvivalentnoy konusnosti kolesnoy pary / A. A. Kiselev [i dr.] // Izvestiya PGUPS, 2019. T. 16, vyp. 2. S. 202–211.
13. Razvitie ispol'zovaniya distancionnyh izmereniy po opredeleniyu geometricheskih parametrov kolesnyh par / A. G. Nuriev [i dr.] // Byulleten' rezul'tatov nauchnyh issledovaniy PGUPS. 2023. № 1. S. 7–18.
14. Cistema kontrolya kolesnyh par na hodu 3DWheel. URL: https://riftek.com/ru/products/real time_wheels_geometry_measurement_system/