Russian Federation
Russian Federation
Russian Federation
St. Petersburg, St. Petersburg, Russian Federation
Objective: To develop recommendations for performing thermal engineering calculations during the ventilation shafts renovation with the creation of internal thermal insulation made of foam glass concrete. Methods: Mathematical modeling by the Metrogiprotrans method of the shaft lining in an elastic medium for specified movements from expanding ice; mathematical modeling by the finite elements method of a system including a ground massive, shaft lining and a load from convection (cold air flow). Results: The criteria for the risk of the ventilation shafts lining destruction during freezing of water-saturated soil behind the lining have been established. It has been established that the destruction of cast-iron lining from the ice expansion depends on the amount of soil resistance and the size of voids behind the lining, but not on the depth of the location of the section under consideration. An influence assessment of the soil thermodynamic characteristics during the ventilation shafts operation in conditions of alternating temperatures has been performed. It was found that as a result of a very wide change in the thermal characteristics of the medium, the temperature behind the lining during thermodynamic calculations changes insignificantly — within 1 °C, and the thermal characteristics of the foam glass concrete layer play a decisive role in heat distribution. Practical importance: The results of the study can be used during the inspection of subway ventilation shafts, as well as an algorithm for conducting thermodynamic calculations for projecting shafts renovation with an insulation made of foam glass concrete.
ventilation shafts, subway, pressure, stresses, convection, ground massive, Metrogiprotrans method, finite element method, foam glass concrete
1. Kozin E. G., Burin D. L, Ledyaev A. P., et al. Ventilation shafts freezing protection under the influence of negative temperatures // Transportation soil engineering in cold regions. Proceedings of transoilcold 2019. 2020. P. 509–519. DOI:https://doi.org/10.1007/978-981-15- 0450-1_53.
2. Kon'kov A. N., Filonov Yu. A., Novikov A. L. i dr. Renovaciya ventilyacionnyh stvolov s ustroystvom konstruktivno-teploizolyacionnoy rubashki iz penosteklobetona // Podzemnye gorizonty. 2019. № 22. S. 56–58.
3. Burin D. L., Novikov A. L., Filonov Yu. A. Zaschita ot promerzaniya ventilyacionnyh stvolov metropolitena s ustroystvom konstrukcionno-teploizolyacionnoy rubashki iz penosteklobetona // Metro i tonneli. 2021. № 4. S. 21–23.
4. Grinevich D. V., Buznik V. M., Nuzhnyy G. A. Obzor primeneniya chislennyh metodov dlya modelirovaniya deformacii i razrusheniya l'da // Trudy VIAM. 2020. № 8 (90). [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/obzor-primeneniyachislennyh- metodov-dlya-modelirovaniya-deformatsiii-razrusheniya-lda.
5. Sorokin K. E., Byval'cev P. M., Aksenov A. A. i dr. Chislennoe modelirovanie obledeneniya v programmnom komplekse FlowVision // Komp'yuternye issledovaniya i modelirovanie. 2020. T. 12 vyp. 1. S. 83–96. DOI:https://doi.org/10.20537/2076-7633-2020-12- 1-83-96
6. Lyanda A. A. Michurina T. A., Nazarova T. V. Programma RK-6 (uchebnaya versiya), razdel «Spravka» [Programma dlya EVM]. SPb.: Lenmetrogiprotrans, 2000.
7. Oreste P. A numerical approach to the hyperstatic reaction method for the dimensioning of tunnel supports // Tunnelling and Underground Space Technology. 2007. Vol. 22, iss. 2. P. 185–205. DOI:https://doi.org/10.1016/j. tust.2006.05.002
8. Do N. A., Dias D., Oreste P., et al. The behaviour of the segmental tunnel lining studied by the hyperstatic reaction method // European Journal of Environmental and Civil Engineering. 2014. Vol. 18, iss. 4. P. 489–510. DOI:https://doi.org/10.1080/19648189.2013.872583
9. Konkov A., Sokornov A., Korolev K. The results analysis of the tubing tunnel facing mathematical modeling using the reduced sections // International scientific siberian transport forum TransSiberia 2021. Lecture Notes in Networks and Systems. Springer, Cham. 2022. Vol. 402, iss. 1. P. 568–576.
10. Ledyaev A., Kavkazskiy V., Davidenko E. Examination of the stress-strain state of service tunnels at the airport Domodedovo // International scientific siberian transport forum TransSiberia 2021. Lecture Notes in Networks and Systems. Springer, Cham. 2022. Vol. 402, iss. 1. P. 28–37.
11. Osvaldo P. M. Vitali, Tarcisio B. Celestino, Antonio Bobet. Construction strategies for a NATM tunnel in São Paulo, Brazil, in residual soil // Underground Space. 2022. Vol. 7, iss. 1. P. 1–18. DOI:https://doi.org/10.1016/j.undsp.2021.04.002
12. Shaposhnikov E. A., Frolov Yu. S. Substantiation of rational design factors of a metropolitan railway station without side railway platforms // Russian Journal of Transport Engineering. 2023. Vol. 10, no. 1 [Elektronnyy resurs]. URL: https://t-s.today/ PDF/05SATS123.pdf. DOI:https://doi.org/10.15862/05SATS123
13. Mohyla M., Hrubesova E., Martinkauppi B. et al. Numerical simulation of the thermal response of seabed sediments to geothermal cycles in Suvilahti, Finland // Renewable Energy. 2024. Vol. 221. DOI: https://doi.org/10.1016/j.renene.2023.119770
14. Gang Wei, Feifan Feng, Chengbao Hu, et al. Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation // Journal of Rock Mechanics and Geotechnical Engineering. 2023. Vol. 15, iss. 6. P. 1547–1564. DOI: doi.org/10.1016/j.jrmge.2022.08.010
15. Ledyaev A. P., Filonov Yu. A., Kon'kov A. N. i dr. Podgotovka i provedenie nauchno-issledovatel'skih rabot po tehnologii renovacii obdelok ventstvolov s primeneniem penosteklobetona: tehnicheskiy otchet, SPb.: FGBOU VO PGUPS, 2017.