EXPERIMENTAL DETERMINATION OF EXTERNAL CHARACTERISTICS OF AC TRACTION SUBSTATIONS FOR SELECTION OF PARAMETERS OF ACTIVE DEVICES OF TRACTION POWER SUPPLY SYSTEM
Abstract and keywords
Abstract (English):
Objective: to develop a method of experimental determination of external characteristics of alternating current traction substations for selection of parameters of active devices of traction power supply system. Methods: finding of equivalent currents of phases of a step-down transformer using the theory of linear electric circuits; statistical methods, including: construction and approximation of external characteristics of regression analysis methods, construction of theoretical and experimental law of distribution of equivalent current of traction load and determination of current quantile for a given confidence probability. Results: advantages and disadvantages of methods of simulation modeling of traction power supply system as applied to determination of parameters of active devices are shown, possibilities of experimental method are given. A detailed description of the conducted experiment is given, connection schemes of measuring devices and vector diagrams of currents and voltages are shown. The main stages of the proposed methodology for selecting the parameters of the booster transformer are outlined. Calculation formulas for determining the equivalent phase currents are presented, the external characteristic for the selected traction substation is constructed. The theoretical and experimental distribution law of the equivalent current of the traction load was constructed and the quantiles of the equivalent current were determined, which amounted to 400 A at a confidence level of 0.968. The maximum required value of volt additive for the selected traction substation and the law of volt additive voltage control for the booster transformer were determined. Practical importance: the proposed methodology of selecting the parameters of active devices of traction power supply system based on the experimental determination of external characteristics of traction substations will allow to determine more accurately the energy performance of booster transformers. It is supposed to improve the methodology by processing the results of synchronous measurements of currents and voltages at neighboring traction substations feeding the inter-substation zone. This will make it possible to expand the possibilities of application of active devices of the traction power supply system and improve the algorithms of booster transformer operation, including taking into account the operation of controlled reactive power compensation devices.

Keywords:
traction power supply system, traction substation, external characteristic, railway transportation, energy efficiency
Text
Publication text (PDF): Read Download
References

1. German L. A. Regulirovanie napryazheniya v tyagovoy seti peremennogo toka zheleznyh dorog / L. A. German, K. V. Kishkurno // Elektrichestvo. 2014. № 9. S. 23–33. EDN XXSQQN.

2. Cheremisin V. T. Assessment of Train Traction Electric Energy Losses / V. T. Cheremisin, M. M. Nikiforov, S. Y. Ushakov // 2018 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2018, Vladivostok. P. 8602528. DOI: 10.1109/ FarEastCon.2018.8602528.

3. Kondrat'ev Yu. V., Tarasenko A. V., Komyakov A. A. i dr. Raschet parametrov ustroystv prodol'noy kompensacii reaktivnoy moschnosti v tyagovoy seti peremennogo toka // Omskiy nauchnyy vestnik. 2015. № 3 (143). S. 237–239. EDN VCNUPN.

4. Agunov A. V., Karabanov A. A., Terehin I. A. i dr. Raschet teplovyh poter' v kombinirovannoy fil'trokompensiruyuschey ustanovke // Byulleten' rezul'tatov nauchnyh issledovaniy. 2023. № 2. S. 92–103. DOI:https://doi.org/10.20295/2223-9987-2023-2-92-103. EDN PJIOVK.

5. Baranov I. A. Modelirovanie processov kompensacii reaktivnoy moschnosti v sisteme tyagovogo elektrosnabzheniya s pomosch'yu MATLAB-Simulink / I. A. Baranov, A. V. Agunov // Intellektual'nye tehnologii na transporte. 2021. № 2(26). S. 5–12. EDN IRFFJT.

6. Grechishnikov V. A., Pletnev D. S., Belov M. N. i dr. Vybor mest ustanovki nakopiteley energii na tyagovyh podstanciyah liniy metropolitena // Elektrotehnika. 2023. № 9. S. 45– 50. DOI:https://doi.org/10.53891/00135860_2023_9_45. EDN TQUIRU.

7. Zakaryukin V. P. Primenenie nakopiteley energii v sistemah tyagovogo elektrosnabzheniya zheleznyh dorog peremennogo toka / V. P. Zakaryukin, A. V. Kryukov, A. V. Cherepanov // Sovremennye tehnologii. Sistemnyy analiz. Modelirovanie. 2014. № 2(42). S. 158–164. EDN SKDVTN.

8. Blinkova S. A. Effektivnost' ispol'zovaniya al'ternativnyh istochnikov pitaniya na zheleznoy doroge // Vestnik transporta Povolzh'ya. 2024. № 1(103). S. 7–12. EDN SLLETJ.

9. Garanin M. A. Modelirovanie sistemy tyagovogo elektrosnabzheniya s ispol'zovaniem nakopiteley energii / M. A. Garanin, S. A. Blinkova // Vestnik Rostovskogo gosudarstvennogo universiteta putey soobscheniya. 2023. № 2(90). S. 85–90. DOI:https://doi.org/10.46973/0201- 727X_2023_2_85. EDN TUOYML.

10. Komyakov A. A. Sovmestnoe primenenie busternyh transformatorov i staticheskih kompensatorov reaktivnoy moschnosti dlya upravleniya rezhimami raboty sistemy tyagovogo elektrosnabzheniya peremennogo toka / A. A. Komyakov, M. M. Nikiforov // Problemy bezopasnosti i effektivnosti tehnicheskih sistem: Sbornik dokladov konferencii s mezhdunarodnym uchastiem, posvyaschennoy 95‑letiyu so dnya rozhdeniya A. V. Plaksa, Sankt-Peterburg, 11–12 maya 2023 goda. SPb.: Peterburgskiy gosudarstvennyy universitet putey soobscheniya Imperatora Aleksandra I, 2023. S. 67–70. EDN CWABFT.

11. Zakaryukin V. P. Parametricheskaya identifikaciya sistem tyagovogo elektrosnabzheniya 2×25 kV / V. P. Zakaryukin, A. V. Kryukov, A. A. Kushov // Vestnik Rostovskogo gosudarstvennogo universiteta putey soobscheniya. 2015. № 2(58). S. 121–129. EDN UCQZKL.

12. Komyakov A. A. Razrabotka algoritma sovmestnyh tyagovyh i elektricheskih raschetov s uchetom harakteristik i parametrov uchastkov i poezdnoy situacii / A. A. Komyakov, A. S. Vil'gel'm, A. I. Shkulov // Izvestiya Transsiba. 2021. № 3(47). S. 106–115. EDN NFUWMM.

13. Korolev A. A., Pletnev D. S., Belov M. N. i dr. Analiz programmnogo obespecheniya dlya modelirovaniya elektrifikacii zheleznyh dorog // Naukosfera. 2022. № 1–1. S. 175–181. EDN ZHHHYU.

14. Nezevak V. L. Sovershenstvovanie metodov i algoritmov rascheta energeticheskih pokazateley sistemy tyagovogo elektrosnabzheniya s reguliruemymi ustroystvami / V. L. Nezevak, A. D. Dmitriev // Izvestiya Transsiba. 2022. № 3(51). S. 19–34. EDN KBOZNF.

15. Vlasov S. P. Vol'todobavochnyy transformator v usloviyah menyayuscheysya tyagovoy nagruzki // Mir transporta. 2012. T. 10, № 1(39). S. 52–57. EDN OWZIPZ.

16. Nezevak V. L. Harakteristika tyagovoy nagruzki dlya opredeleniya parametrov nakopitelya elektricheskoy energii / V. L. Nezevak, A. P. Shatohin // Mir transporta. 2018. T. 16, № 2(75). S. 84–94. EDN XSMVTN.

17. Komyakov A. A. Primenenie veroyatnostnogo podhoda dlya formirovaniya grafika elektrotyagovoy nagruzki pri imitacionnom modelirovanii sistemy tyagovogo elektrosnabzheniya / A. A. Komyakov, T. V. Komyakova, A. I. Shkulov // Vestnik Rostovskogo gosudarstvennogo universiteta putey soobscheniya. 2023. № 4(92). S. 184–192. DOI:https://doi.org/10.46973/0201-727X_2023_4_184. EDN JLRHET.

Login or Create
* Forgot password?