Russian Federation
Russian Federation
The object of study is discrete devices with memory, which describes the operation of such devices by using the mathematical model of fuzzy automaton. The fuzzy automaton model is proposed, which takes into account the specifics of the problem under consideration. In this model, the phenomenon of fuzzyness is manifested in the transitions between the states of the fuzzy automaton. As in the case of a classical automaton, the problem is reduced to the counterhonking coding of fuzzy automaton states. The paper proposes a principle of construction of methods of such coding for fuzzy automaton. Its idea consists in transformation of a given fuzzy automaton in the form of a fuzzy graph into some special classical graph. A description of the procedure of such transformation is given. It is proved that all possible races on the fuzzy graph given fuzzy automaton, are a subset of the races occurring on the classical graph transformed by the mentioned procedure. Since an extensive arsenal of methods has been developed for finding signal races in classical automata, it can be applied to fuzzy automaton.
reliability of electronic devices, signal races, models of fuzzy device, fuzzy automata and graphs, transformations of fuzzy graphs into classical ones, methods of counterhonking coding for fuzzy automaton
1. Sagalovich Yu. L. Metod povysheniya nadezhnosti konechnogo avtomata / Yu. L. Sagalovich // Problemy peredachi informacii. 1965. T. 1, vyp. 1. S. 27–35.
2. Zakrevskiy A. D., Pottosin Yu. V., Cheremisinova L. D. Logicheskie osnovy proektirovaniya diskretnyh ustroystv / A. D. Zakrevskiy, Yu. V. Pottosin, L. D. Cheremisinova. M.: FIZMATLIT, 2007. 592 s.
3. Fomichev V. S. Formal'nye yazyki, grammatiki i avtomaty: / Kurs lekciy [Sayt] / SPb. 2006. URL: https://old.etu.ru/misc/LGA_2007 FINAL/Index/html.
4. Burkatovskaya L. I., Burkatovskaya Yu. B. Logicheskoe proektirovanie diskretnyh ustroystv / L. I. Burkatovskaya, Yu. B. Burkatovskaya. Tomsk: Tomskiy gosuniversitet. 2011. 172 s.
5. Zadeh L. A. (1965) Fuzzy sets. Information and Control. Vol. 8, iss. 3. P. 338–353.
6. Kofman A. Vvedenie v teoriyu nechetkih mnozhestv / A. Kofman. M.: Radio i svyaz'. 1982. 432 s.
7. Speranskiy D. V. Eksperimenty s nechetkimi avtomatami / D. V. Speranskiy // Avtomatika i telemehanika. 2015. № 2. S. 107–124. EDN: TOBFFF.
8. Santos E. Maximin automata/ E. Santos // Information and Control. 1968. Vol. 13. P. 363–377.
9. Topencharov V., Stoeva S. Fuzzy-topological automata / V. Topencharov, S. Stoeva // Fuzzy Sets and Systems. 1985. Vol. 16, iss. 1. P. 65–74.
10. Reyneri L. M. An Introduction to Fuzzy State Automata. Biological and Artificial Computation: From Neuroscience to Technology / L. M. Reyneri // Lecture Notes in Computer Science. 1997. Vol. 1240. P. 273–283.
11. Speranskiy D. V. Sintez obnaruzhivayuschih testov dlya nechetkih avtomatov s konechnoy pamyat'yu / D. V. Speranskiy // Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tehnika i informatika. 2024. № 66. S. 120–127. DOI:https://doi.org/10.17223/19988605/66/12. EDN: PLAEMB.
12. Speranskiy D. V. O zadache obrascheniya vyhodov nechetkih diskretnyh sistem / D. V. Speranskiy // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mehanika. Informatika. 2022. T. 22, № 1. S. 112–122. DOI:https://doi.org/10.18500/1816– 9791-2022-22-1-112-122. EDN: VMOPOL.
13. Gorelik A. V., Zhuravlev I. A., Orlov A. V. i dr. Testirovanie sistem s nechetkimi diskretnymi komponentami / A. V. Gorelik, I. A. Zhuravlev, A. V. Orlov, D. V. Speranskiy // Avtomatika na transporte. 2020. T. 6, № 4. S. 518–531. DOI:https://doi.org/10.20295/2412-9186- 2020-6-4-518-531. EDN: ZXTJIM.
14. Speranskiy D. V. Testirovanie nechetkih lineynyh avtomatov / D. V. Speranskiy // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Matematika. Mehanika. Informatika. 2019. T. 19, № 2. S. 233–240. DOI:https://doi.org/10.18500/1816-9791-2019-19- 2-233-240. EDN: JPNAKG
15. Speranskiy D. V. Sintez testov dlya nechetkih lineynyh avtomatov // Tanaevskie chteniya: Doklady Vos'moy Mezhdunarodnoy nauchnoy konferencii — NAN Belarusi, Ob'edinennyy institut problem informatiki, Institut matematiki, Belorusskiy gosuniversitet. 2018. Minsk. S. 161–165.