Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
Russian Federation
UDK 681.518.5 Системы автоматического контроля и технической диагностики
UDK 656.259.9 Другие устройства СЦБ
The purpose of the article is to present the results of formalizing the description and developing a formalized transition from a static functional IDEF0-model to a dynamic, simulation model of the life cycle of railway automation and remote control systems. The GPSS World tool is traditionally used for software implementation of simulation models. A concept for representing IDEF0-diagram formalisms using a mathematical queuing scheme is proposed. The main provisions of the concept are: an object-application, the type of which is determined by the type of objects, and the mechanism is determined by the servicing device. The properties of these applications and serving devices are recorded in the rows of the passport matrix; connections in accordance with the IDEF0-diagram are indicated by recording the indices of the block-function sequentially in the row of the given block-function. The possibility of realizing the block-function function is evaluated by a Boolean function. The arguments of this function are: control sign, required resources, state of service devices. The block-function function is checked by the Boolean function of monitoring the time of block-function occupation. To realize this concept the following GPSS World tools are defined: continuous and discrete functions, transactions, singlechannel devices, logical keys, MX$PASP01 matrix, user list, Boolean variables. A universal GPSS-model, tuned to a specific IDEF0-diagram at the source data level, is developed based on indirect addressing of the specified tools. At the same time, it allows not to change the program text. The developed GPSS-program formalizes the possibility and feasibility of the transition from the IDEF0-diagram to the GPSS-model of life cycle of railway automation systems.
IDEF0-diagram, life cycle, railway automation and remote control systems, mathematical queuing schemes, GPSS simulation model, indirect addressing, simulation model, queuing systems
1. Konstantinova T. Yu., Lykov A. A., Markov D. S. i dr. Tehnologiya imitacionnogo modelirovaniya sistem zheleznodorozhnoy avtomatiki i telemehaniki // Avtomatika na transporte. 2023. T. 9, № 2. S. 193–204. DOI:https://doi.org/10.20295/2412-9186-2023-9- 02-193-204. EDN HYPJQU.
2. RD IDEF 0-2000. Metodologiya funkcional'nogo modelirovaniya IDEF0. Rukovodyaschiy dokument // Prikladnaya logistika. M.: Gosstandart Rossii, 2000. 61 s.
3. Bisterfel'd O. A. Metodologiya funkcional'nogo modelirovaniya IDEF0: ucheb.-metod. posobie. Ryazan': Ryazanskiy gos. un-t imeni S. A. Esenina, 2008. 44 [2] s.
4. Veis Šerifi., Predrag Dašić, Ratomir Jecmenica, et al (2009). Functional and Information Modeling of Production Using IDEF Methods. Strojniški vestnik, 55 (2): 131–140.
5. Zaramenskih E. P. Upravlenie zhiznennym cikloinformacionnyh sistem: uchebnik i praktikum / 1‑e izd. M.: Yurayt, 2019. 431 s. ISBN: 978-5-9916- 9200-7. EDN WLZOJI.
6. Integration DEFinition for function modeling (IDEF0). Draft Federal Information Processing Standards Publication 183. December 21. https://pcoding.ru/gost/idef0en.pdf
7. Kudryavcev E. M. GPSS World. Osnovy imitacionnogo modelirovaniya razlichnyh sistem: ucheb. posobie. M.: DMK Press, 2007. 320 s. ISBN: 5-94074-219-X. EDN RAZBMT.
8. Law A. M. How to build valid and credible simulation models // Proc. of the Winter Simulation Conf. Miam (USA), 7–10 Dec, 2008. P. 39–47.
9. Devyatkov V. V., Devyatkov T. V., Fedotov M. V. Imitacionnye issledovaniya v srede modelirovaniya GPSS STUDIO: ucheb. posobie. M.: Nauchno-izdatel'skiy centr INFRA-M, 2018. 283 s. ISBN: 978-5-9558-0595-5. EDN RRBMCR.
10. Rabe M., Spieckermann S., Wenzel S. Verifikaciya i validaciya modelirovaniya v proizvodstve i logistike. Simul. Primechaniya Eur., 2009, 19. S. 21–29.
11. Markov D. S., Bulavskiy P. E. Matrichnyy metod formalizacii imitacionnyh modeley slozhnyh sistem massovogo obsluzhivaniya // Izvestiya PGUPS. 2010. № 4. S. 63–74. [Elektronnyy resurs]. URL: https://izvestiapgups.org/assets/files/10.20295-1815-588X‑2015–2/10.20295-1815588X-2015-2-99-105.pdf
12. Markov D. S., Lykov A. A. Metod formalizacii imitacionnyh modeley tehnologicheskih processov v hozyaystve avtomatiki i telemehaniki na zheleznodorozhnom transporte // Izvestiya Peterburgskogo universiteta putey soobscheniya. 2012. №1 (30). S. 24–30.
13. Markov D. S., Bulavskiy P. E. Ierarhicheskaya mnogomatrichnaya formalizaciya imitacionnoy modeli elektronnogo dokumentooborota tehnicheskoy dokumentacii // Aktual'nye voprosy razvitiya sistem zheleznodorozhnoy avtomatiki i telemehaniki: sb. nauch. tr. PGUPS. SPb., 2013. S. 52–60.
14. Belishkina T. A., Konstantinova T. Yu., Lykov A. A. i dr. Logiko-vremennaya formalizaciya imitacionnyh modeley sistem zheleznodorozhnoy avtomatiki i telemehaniki // Avtomatika na transporte. 2023. № 4. S. 368–376. DOI: https://doi.org/10.20295/2412-9186-2023-9-04-368-376.
15. Devyatkov V. V. Rukovodstvo pol'zovatelya po GPSS World. Kazan': Master layn, 2002. 383 s.