FEATURES OF THE USE OF BIG DATA IN THE STUDY OF FREIGHT TRAFFIC ON RAILWAY TRANSPORT
Abstract and keywords
Abstract (English):
Objective: to characterize the features and prospects of using big data tools and technologies in the management of the transportation process on railways. Methods: neural network modeling, system analysis, forecasting, programming, big data, predictive analytics. Results: a datalogical model of entities for storing up-to-date data on cargo flows is proposed, and a structure for building a system for accumulating information is proposed. In addition, the paper examines the applied issues of solving the problems of storing, receiving and processing data using big data methods. Practical significance: Improving the management of railway transportation processes in the context of digital transformation in terms of obtaining more accurate forecasts.

Keywords:
big data, cargo flows, predictive analytics, digitalization, forecast, neural network model
Text
Text (PDF): Read Download
References

1. Podhalyuzina V. A. Analiz sostoyaniya zheleznodorozhnogo transporta v Rossii // Ekonomika i socium. 2014. № 2–3 (11) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/ analiz-sostoyaniya-zheleznodorozhnogo-transporta-v-rossii (data obrascheniya: 17.01.2024).

2. Rogushina Yu. V. Razrabotka ontologicheskoy modeli informacionnoy potrebnosti pol'zovatelya pri semanticheskom poiske // Ontologiya proektirovaniya. 2014. № 2 (12) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/razrabotka-ontologicheskoy-modeli-informatsionnoypotrebnosti- polzovatelya-pri-semanticheskom-poiske (data obrascheniya: 17.01.2024).

3. Vlasov A. I., Podorin A. A., Malevanyy A. Yu. i dr. Analiz vizual'nyh modeley tehnologii bol'shih dannyh pri monitoringe perevozochnogo processa na osnove hranilischa reysov gruzovyh vagonov // Sovremennye tehnologii. Sistemnyy analiz. Modelirovanie. 2020. № 3 (67) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/analiz-vizualnyh-modeleytehnologii- bolshih-dannyh-pri-monitoringe-perevozochnogo-protsesa-na-osnove-hranilischareysov- gruzovyh (data obrascheniya: 17.01.2024).

4. Kravchenko V. O., Kryukova A. A. Bol'shie dannye — prakticheskie aspekty i osobennosti // Academy. 2016. № 6 (9) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/ bolshie-dannye-prakticheskie-aspekty-i-osobennosti (data obrascheniya: 17.01.2024).

5. Moskat N. A. Metody povysheniya effektivnosti avtomatizirovannoy sistemy operativnogo upravleniya na zheleznodorozhnom transporte // IVD. 2018. № 1 (48) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/metody-povysheniya-effektivnostiavtomatizirovannoy- sistemy-operativnogo-upravleniya-na-zheleznodorozhnom-transporte (data obrascheniya: 15.01.2024).

6. Groshev G. M., Klimova N. V., Sugorovskiy A. V. i dr. Avtomatizaciya informacionnogo obespecheniya nezavisimyh uchastnikov mul'timodal'nyh perevozok konteynerov v morskoy port v transportnom uzle // Avtomatika na transporte. 2018. № 3 [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/avtomatizatsiya-informatsionnogo-obespecheniyanezavisimyh uchastnikov-multimodalnyh-perevozok-konteynerov-v-morskoy-port-v (data obrascheniya: 17.01.2024).

7. Arhipova E. S. Rol' obrabotki bol'shih dannyh v upravlenii sovremennym predpriyatiem // Ogarev-Online. 2019. № 7 (128) [Elektronnyy resurs]. URL: https://cyberleninka.ru/ article/n/rol-obrabotki-bolshih-dannyh-v-upravlenii-sovremennym-predpriyatiem (data obrascheniya: 17.01.2024).

8. Maloveckaya E. V., Kozlovskiy A. P. Analiz modeley i principov sistemnogo modelirovaniya pri postroenii prognoznyh modeley pogruzki gruzov // International Journal of Open Information Technologies. 2020. № 12 [Elektronnyy resurs]. URL: https://cyberleninka. ru/article/n/analiz-modeley-i-printsipov-sistemnogo-modelirovaniya-pri-postroenii-prognoznyhmodeley- pogruzki-gruzov (data obrascheniya: 17.01.2024).

9. Nazarenko Yu. L. Obzor tehnologii «bol'shie dannye» (big data) i programmno-apparatnyh sredstv, primenyaemyh dlya ih analiza i obrabotki // European science. 2017. № 9 (31) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/obzor-tehnologii-bolshie-dannye-big-data-i-programmnoapparatnyh- sredstv-primenyaemyh-dlya-ih-analiza-i-obrabotki (data obrascheniya: 17.01.2024).

10. Menschikov A. A., Perfil'ev V. E., Fedosenko M. Yu. i dr. Osnovnye problemy ispol'zovaniya bol'shih dannyh v sovremennyh informacionnyh sistemah // Stolypinskiy vestnik. 2022. № 1 [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/osnovnyeproblemy- ispolzovaniya-bolshih-dannyh-v-sovremennyh-informatsionnyh-sistemah (data obrascheniya: 17.01.2024).

11. Pugachev S. V., Homonenko A. D., Yarmolinskiy F. A. O razrabotke informacionnoy sistemy gruzoperevozok OAO «RZhD» na osnove bezopasnoy integracii prilozheniy // Intellektual'nye tehnologii na transporte. 2023. № 1 (33) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/o-razrabotke-informatsionnoy-sistemy-gruzoperevozok-oao-rzhdna- osnove-bezopasnoy-integratsii-prilozheniy (data obrascheniya: 17.01.2024).

12. Kravchenko M. V., Nikitin A. S., Spiridonov S. I. Ob unifikacii obmena dannymi mezhdu raznorodnymi sredstvami i sistemami v edinom informacionnom prostranstve // I-methods. 2020. № 2 [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/ob-unifikatsiiobmena dannymi-mezhdu-raznorodnymi-sredstvami-i-sistemami-v-edinom-informatsionnomprostranstve (data obrascheniya: 17.01.2024).

13. Plyasova S. V., Kalinin A. R., Zelenkina E. V. Big data kak ob'ekt ocenki // Imuschestvennye otnosheniya v RF. 2022. № 1 (244) [Elektronnyy resurs]. URL: https://cyberleninka.ru/ article/n/bigdata-kak-obekt-otsenki (data obrascheniya: 17.01.2024).

14. Akimov A. E. Bol'shie dannye, iskusstvennyy intellekt i oblachnye tehnologii: cifrovizaciya zheleznyh dorog // Innovacii i investicii. 2023. № 3. [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/bolshie-dannye-iskusstvennyy-intellekt-i-oblachnyetehnologii- tsifrovizatsiya-zheleznyh-dorog (data obrascheniya: 17.01.2024).

15. Interaktivnyy avtoinformator dlya klientov zheleznodorozhnogo transporta [Rukois'] : vyp. kvalif. rab. ... step. mgs. / F. A. Yarmolinskiy ; nauchnyy rukovoditel' S. V. Puga- chev ; rec. A. N. Gorkunov ; FGBOU VO PGUPS, kafedra IVS. 2023. 147 s. 23 s.

16. Kurenkov P. V., Kotlyarenko A. F. Vneshnetorgovye perevozki v smeshannom soobschenii: ekonomika, logistika, upravlenie. Samara: SamGAPS, 2003. 636 s.

17. Kurenkov P. V. Material'nye potoki v makrologisticheskih sistemah: sistematizaciya i klassifikaciya // Transport: nauka, tehnika, upravlenie. 2019. № 7. S. 21–26.

18. Kurenkov P. V., Davydov S. V., Bolgova Yu. S. Camarskiy centr konsolidacii gruzopotokov v sisteme mezhdunarodnyh transportnyh koridorov // Logistika segodnya. 2007. № 5. S. 312–322.

19. Kurenkov P. V., Bagimov A. V. Vzaimodeystvie otpraviteley i poluchateley kamennogo uglya pri eksportnyh perevozkah v smeshannom soobschenii // Materialy mezhdunarodnogo nauchno-obrazovatel'nogo foruma. Burgas: 2014. № 1 (5). S. 258–265.

20. Kurenkov P. V., Solov'eva L. V. Izderzhki vzaimodeystviya kompaniy-operatorov i OAO «RZhD» // Materialy mezhdunarodnogo nauchno-obrazovatel'nogo foruma. Burgas: 2014. № 1 (5). S. 266–275.

21. Kurenkov P. V., Solov'eva L. V. Logisticheskie izderzhki vzaimodeystviya kompaniy operatorov i OAO «RZhD» // Logistika. 2014. № 4 (89). S. 24–27.

22. Kurenkov P. V., Solop I. A., Chebotareva E. A. i dr. Ocenka vypolneniya srokov dostavki gruzov na yuge Rossii // Ekonomika zheleznyh dorog. 2023. № 7. S. 13–25.

23. Solop I. A., Chebotareva E. A. Prichinno-sledstvennyy analiz vypolneniya nadezhnosti dostavki gruzov zheleznodorozhnym transportom v adres potrebiteley Yuzhnogo regiona i portov Azovo-Chernomorskogo basseyna // IVD. 2018. № 3 (50) [Elektronnyy resurs]. URL: https://cyberleninka.ru/article/n/prichinno-sledstvennyy-analiz-vypolneniya-nadezhnostidostavkigruzov-zheleznodorozhnym-transportom-v-adres-potrebiteley-yuzhnogo (data obrascheniya: 17.01.2024).

24. Sistema upravleniya oknami [Elektronnyy resurs]. URL: https://niias.ru/products-andservices/ products/asu/avtomatizirovannaya-sistema-planirovanie-uchet-i-analiz-provedeniya-okoni- vypolneniya-khozyaystvenn/?ysclid=lrj4m2iauo361494077 (data obrascheniya: 17.01.2024).

Login or Create
* Forgot password?