USE OF NUMERICAL MODELING IN ANALYSIS OF AEROELASTIC INTERACTION OF ROLLING STOCK WITH TUNNEL CONSTRUCTIONS
Abstract and keywords
Abstract (English):
Purpose of the work: study of the formation of a complex air structure under conditions of rolling stock movement along extended underground structures using numerical modeling methods. Methods: an analysis of the influence of aerodynamic factors on rolling stock, passengers and railway infrastructure was carried out based on the finite element and volume method. The reasons for the occurrence of a compacted air zone, which appears in front of the head car of the train and exerts significant resistance to the movement of the train using the “Frozen Rotor” method, have been investigated. The indicators of energy efficiency and safety of the process of freight and passenger transportation are analyzed, taking into account the processes of aerodynamic interaction of moving rolling stock and artificial tunnel-type structures. Results: using numerical modeling and the use of the “Frozen Rotor” method, it was possible to obtain a qualitative picture of the distribution of transverse vortex air flows resulting from the occurrence of viscous friction. Regularities were discovered in the changes in the dynamics of pressure and speed of air masses on the surface of the head fairing when a train enters a tunnel. The fact of the negative impact of zones of high and low pressure, as well as their sharp drop, on the locomotive crew and passengers has been established. Practical significance: the possibility of conducting research in the field of aerodynamics of railway transport using modern numerical modeling methods is shown. This topic is very relevant in the field of designing high-speed rolling stock.

Keywords:
aeroelastic interaction, artificial tunnel-type structures, energy efficiency, numerical modeling, transverse vortices, piston, effect
Text
Publication text (PDF): Read Download
References

1. O bezopasnosti vysokoskorostnogo zheleznodorozhnogo transporta: tehnicheskiy reglament Tamozhennogo soyuza ot 15.07.11 s izm. na 09.12.11 (TR TS 002/2011) [Elektronnyy resurs]. URL: http://docs.cntd.ru/document/902293437 (data obrascheniya: 01.01.2024).

2. Tehnicheskiy reglament Tamozhennogo Soyuza TR TS 002/2011 «O bezopasnosti vysokoskorostnogo zheleznodorozhnogo transporta».

3. Paradot N., Talcotte C., Willaime A., et al. Methodology for computing the flow around a high speed train for drag estimation and validation using wind tunnel experiments. World Congress on Rail Research, Tokyo. 1999.

4. Vataev A. S., Vatulin Ya. S., Vorob'ev A. A. i dr. Cifrovoe modelirovanie aerouprugogo vzaimodeystviya podvizhnogo sostava s portal'nymi sooruzheniyami pereval'nyh tonneley // Byulleten' rezul'tatov nauchnyh issledovaniy. 2022. № 1. S. 104–123. DOI:https://doi.org/10.20295/2223- 9987-2022-2-104-123.

5. Vorob'ev A. A., Vatulin Ya. S., Vataev A. S. i dr. K voprosu snizheniya negativnogo effekta vozdeystviya aerouprugogo vzaimodeystviya vysokoskorostnogo podvizhnogo sostava s elementami tonnel'nyh sooruzheniy // Izvestiya Peterburgskogo universiteta putey soobscheniya. SPb., 2022. № 3. S. 590–599.

6. Karimov D. D., Vatulin Ya. S., Vorob'ev A. A. i dr. Osobennosti formirovaniya struktury vozdushnyh mass v tonnele pri dvizhenii poezda // Transport BRIKS. 2023. № 2 (2). S. 1–6. DOI:https://doi.org/10.46684/2023.2.6

7. Bogdanov N. V., Vataev A. S., Vatulin Ya. S. i dr. Obzor metodov CFD-modelirovaniya aerodinamicheskih processov pri dvizhenii podvizhnogo sostava po protyazhennym podzemnym sooruzheniyam // Sistemy avtomatizirovannogo proektirovaniya na transporte. 2023. St. 28–34. DOI: 56575829.

8. Karimov D. D., Vataev A. S., Metlyakova i dr. Ispol'zovanie chislennogo modelirovaniya pri analize aerodinamicheskih problem na transporte // Transport BRIKS. 2023. № 2 (3). S. 1–5. DOI:https://doi.org/10.46684/2023.3.5/.

9. Karimov D. D., Vorob'ev A. A., Vataev A. S. i dr. Issledovanie poperechnoy ustoychivosti vysokoskorostnogo podvizhnogo sostava pri vyhode iz tonnelya // Byulleten' rezul'tatov nauchnyh issledovaniy. 2023. Vyp. 2. S. 115–135.

10. Lugin I. V., Alferova E. L. Issledovanie aerodinamicheskih processov pri dvizhenii poezda v protyazhennyh zheleznodorozhnyh tonnelyah // Interekspo GEO-Sibir'. 2018. T. 5. S. 155–160.

11. Ledyaev A. P., Kavkazskiy V. N., Shelgunov O. O. Matematicheskoe modelirovanie aerodinamicheskih processov v zheleznodorozhnyh tonnelyah na vysokoskorostnyh magistralyah // Metro i tonneli. 2021. № 3. S. 40–43.

12. Ledyaev A. P., Kavkazskiy V. N., Kreer R. O. Osobennosti proektirovaniya tonneley na vysokoskorostnyh magistralyah // Transport Urala. 2015. № 4 (47). S. 3–9. DOI:https://doi.org/10.20291/1815- 9400-2015-4-3-9.

Login or Create
* Forgot password?