STUDY OF THE RESISTANCE OF CONCRETE OF ANISOTROPIC AND VARITROPIC STRUCTURES TO ALTERNATING WETTING AND DRYING
Abstract and keywords
Abstract (English):
Objective: study of the influence of a number of operational factors on the final resistance of varitropic concrete to alternating cycles of wetting and drying. This work identifies the problem of concrete resistance to cyclic wetting and drying, and also formulates a scientific deficiency consisting in the inadequacy of the existing knowledge base regarding the relationship between the type of concrete structure and its resistance to cyclic influences, including alternating wetting and drying. Methods: test samples were made using three different technologies: vibration, centrifugation, and vibration centrifugation. The following main characteristics were studied: compressive strength, tensile strength in bending, water resistance. Experimental studies have shown that concretes with a varitropic structure (centrifugation and vibration centrifugation) have higher resistance to alternating wetting and drying than concretes with an anisotropic structure (vibration). After 500 cycles of wetting-drying and a high degree of aggressiveness of the saturated aqueous environment in terms of the content of sulfate, chloride and nitrate salts, the loss of compressive and tensile strength in bending for vibrated concrete was 28.7 and 32.7 respectively, for centrifuged concrete — 26.2 and 27.8%, respectively, and for vibrocentrifuged ones — 19.6 and 21.4 %, respectively. Results: Vibrocentrifuged varitropic concretes showed the greatest resistance to the effects of alternating wetting in an aqueous environment with varying degrees of aggressiveness and drying compared to centrifuged varitropic and vibrated anisotropic concretes.

Keywords:
concrete, variatropic structure, anisotropic structure, wetting and drying cycles, strength
Text
Text (PDF): Read Download
References

1. Leonovich S. N., Zikeev L. N. Dolgovechnost' centrifugirovannyh zhelezobetonnyh stoek. Obzornaya informaciya. M.: Informenergo, 1991. 64 s.

2. Nizina T. A., Nizin D. R., Selyaev V. P. i dr. Bol'shie dannye pri prognozirovanii klimaticheskoy stoykosti stroitel'nyh materialov. I. Temperatura i vlazhnost' vozduha // Stroitel'nye materialy i izdeliya. 2023. T. 6, № 3. S. 18–30. DOI:https://doi.org/10.58224/2618-7183-2023-6-3-18-30.

3. Tolstoy A. D., Lesovik V. S., Novikov K. Yu. i dr. Korrozionnaya stoykost' izdeliy iz poroshkovogo betona // Vestnik BGTU im. V. G. Shuhova. 2016. № 11. S. 43–46.

4. Sergushina E. S., Erofeev V. T., Kabanov O. V. i dr. Stoykosti tyazhelyh betonov v usloviyah peremennoy vlazhnosti // Vestnik Privolzhskogo territorial'nogo otdeleniya Rossiyskoy akademii arhitektury i stroitel'nyh nauk: sb. nauchnyh trudov. Nizhniy Novgorod: Nizhegorodskiy gosudarstvennyy arhitekturno-stroitel'nyy universitet. 2022. S. 126–141.

5. Tereshkin I. P. Issledovanie korrozionnoy stoykosti modificirovannyh betonnyh kompozitov v sul'fatnyh sredah // Inzhenernyy vestnik Dona. 2022. № 11. URL: ivdon.ru/ru/magazine/ archive/n11y2022/8036

6. Petrik I. Yu., Zaychenko N. M., Zaychenko V. M. i dr. Morozostoykost' i korrozionnaya stoykost' tyazhelogo betona s povyshennym soderzhaniem obogaschennoy zoly TES // Sovremennoe promyshlennoe i grazhdanskoe stroitel'stvo. 2021. № 4. S. 225–234.

7. Korsun A. M., Batyanovskiy E. I. Morozostoykost' cementnogo betona vo vzaimosvyazi s iskusstvenno sozdavaemoy poristost'yu // Problemy sovremennogo betona i zhelezobetona. 2018. № 10. S. 169–184.

8. Li L., Shi J., Kou J. Experimental Study on Mechanical Properties of High-Ductility Concrete against Combined Sulfate Attack and Dry-Wet Cycles // Materials. 2021. No. 14. 4035. DOI:https://doi.org/10.3390/ma14144035.

9. Liu J., Zang S., Yang F., et al. Fracture Mechanical Properties of Steel Fiber Reinforced Self-Compacting Concrete under Dry-Wet Cycle Sulfate Attack // Buildings. 2022. No. 12. 1623. DOI: 10.3390/ buildings12101623.

10. Marcos-Meson V., Fischer G., Solgaard A., et al. Mechanical Performance of Steel Fibre Reinforced Concrete Exposed to Wet-Dry Cycles of Chlorides and Carbon Dioxide // Materials. 2021. No. 14. 2642. DOI:https://doi.org/10.3390/ma14102642.

11. Stel'mah S. A., Holodnyak M. G., Scherban' E. M. i dr. Ustroystvo dlya izgotovleniya izdeliy iz vibrocentrifugirovannogo betona // Pat. na izobretenie 197610, Rossiya, MPK B28B 21/30, DGTU. № 2020103753; zayavl. 29.01.2020; opubl. 18.05.2020, Byul. № 14. 4 s.

12. Mailyan L. R., Vinogradova E. V., El'shaeva D. M. i dr. Issledovanie integral'nyh prochnostnyh i deformativnyh harakteristik centrifugirovannyh i vibrocentrifugirovannyh betonov na aktivirovannom portlandcemente // Stroitel'stvo i arhitektura. 2021. № 3. S. 46– 50. DOI:https://doi.org/10.29039/2308-0191-2021-9-3-46-50 (data obrascheniya: 07.12.2023).

13. Nevskiy V. A., Yundin A. N., Konchichev M. P. i dr. Dolgovechnost' zhelezobetonnyh lotkov i puti ee povysheniya // Gidrotehnika i melioraciya. 1971. № 2. S. 57–64.

14. Shcherban’ E. M., Stel’makh S. A., Beskopylny A. N., et al. The Influence of Recipe-Technological Factors on the Resistance to Chloride Attack of Variotropic and Conventional Concrete // Infrastructures. 2023. No. 8. 108. DOI:https://doi.org/10.3390/infrastructures8070108.

15. Lesnichenko E. N., Chernysheva N. V., Drebezgova M. Yu. i dr. Razrabotka mnogokomponentnogo gipsocementnogo vyazhuschego s primeneniem metoda matematicheskogo planirovaniya eksperimenta // Stroitel'nye materialy i izdeliya. 2022. Obschetehnicheskie zadachi i puti ih resheniya Proceedings of Petersburg Transport University 72 2024/1 T. 5, № 2. S. 5–12. DOI:https://doi.org/10.58224/2618-7183-2022- 5-2-5-12.

16. Poursaee A., Ross B. The Role of Cracks in Chloride-Induced Corrosion of Carbon Steel in ConcreteReview // Corros. Mater. Degrad. 2022. No. 3. 258–269. DOI:https://doi.org/10.3390/cmd3020015

17. Beskopylny A. N., Shcherban E. M., Stel’makh S.A., et al. Influence of Variatropy on the Evaluation of Strength Properties and Structure Formation of Concrete under Freeze-Thaw Cycles // J. Compos. Sci. 2023. No. 7. 58. DOI:https://doi.org/10.3390/jcs7020058.

18. Ahverdov I. N. Voprosy teorii centrobezhnogo formovaniya i uplotneniya betonnoy smesi. Respublikanskoe nauchno-tehnicheskoe soveschanie: Tehnologiya formovaniya zhelezobetonnyh izdeliy. 1979. S. 3–12.

19. Trofimov B. Ya., Shuldyakov K. V., Mahmudov A. M. Vliyanie na dolgovechnost' betona mikrostruktury gidratnyh faz cementnogo kamnya // Vestnik BGTU im. V. G. Shuhova. 2021. № 3. S. 8–18.

20. Moskvin V. M., Ivanov F. M., Alekseev S. N. i dr. Korroziya betona i zhelezobetona, metody ih zaschity. M.: Stroyizdat, 1960. S. 536.

21. Klyuev A. V., Kashapov N. F., Klyuev S. V. i dr. Eksperimental'nye issledovaniya processov strukturoobrazovaniya kompozicionnyh smesey s tehnogennym mehanoaktivirovannym kremnezemistym komponentom // Stroitel'nye materialy i izdeliya. 2023. T. 6, № 2. S 5–18. DOI:https://doi.org/10.58224/2618- 7183-2023-6-2-5-18.

Login or Create
* Forgot password?