Russian Federation
Russian Federation
Russian Federation
UDK 656.6 Эксплуатация водного транспорта
The intellectualization of water transport is accompanied by an expansion of the landscape of threats to transport security, caused by the characteristics and weaknesses of the technologies being introduced, which are the convergence of information and telecommunication technologies, automated and automatic control technologies and artificial intelligence. The peculiarity of these technologies is working with large volumes of information. Violation of the security of information processed in intelligent systems of water transport (illegal access, modification, deletion and similar unauthorized influence) causes a violation of transport security and, as a consequence, the security of critical information infrastructure and the country’s critical infrastructure, national security. Convergent technologies used in intelligent transport systems are characterized by multiple and poorly formalized manifestations of the consequences of threats. The article presents a model for assessing the risks of information security of intelligent water transport systems, based on the methods of the theory of fuzzy sets and fuzzy logic, the use of which makes it possible to take into account the above-mentioned features of the technologies being implemented. The hierarchical structure of the model and the use of fuzzy set theory and fuzzy logic methods make it possible to adapt the model to various risk criteria, types of input data and the level of detail of risk analysis. For the presented model, a methodology for assessing information security risks has been developed and an example of risk calculation is given. The developed model and methodology are intended to build an information security risk management system for autonomous shipping, implementing technologies of hybrid (augmented, extended) intelligence, providing for the use of artificial intelligence controlled by people.
transport security, natural intelligence, artificial intelligence, intelligent systems, linguistic variables, information aggregation systems
1. Mikhalevich I. F. Problemic Issues of Deploying Cooperative Intelligent Transport Systems During of Digital Transformation. In 2021 International Conference “Systems of Signals Generating and Processing in the Field of on Board Communications”. - DOI:https://doi.org/10.1109/IEEECONF51389.2021.9415999.
2. Baranov L. A. Ivanova N. D., Mihalevich I. F. i dr. Informacionnaya bezopasnost' sistemy avtonomnogo sudovozhdeniya v kontekste specificheskih dlya intellektual'nyh transportnyh sistem ugroz // Sbornik trudov mezhdunarodnoy nauchnoy konferencii «Problemy upravleniya bezopasnost'yu slozhnyh sistem». Moskva, 13 dekabrya 2023 g. (stat'ya prinyata k publikacii).
3. Andrej Androjna, Marko Perkovic. Impact of Spoofing of Navigation Systems on Maritime Situational Awareness. September 2021. Transactions on Maritime Science 10(2). - DOI:https://doi.org/10.7225/toms.v10.n02.w08.
4. Goudosis A., Katsikas S. Secure Automatic Identification System (SecAIS): Proof-of-Concept Implementation // Journal of Marine Science and Engieneering. 2022, 10, 805. J. Mar. Sci. Eng. 2022, 10, 805. - DOI:https://doi.org/10.3390/jmse10060805.
5. Svilicic B., Brčić D., Žuškin S., et al. (2019, March). Raising Awareness on Cyber Security of ECDIS // Trans- Nav, The International Journal on Marine Navigation and Safety of Sea Transportation, 13(1), 231-236. - DOI:https://doi.org/10.12716/1001.13.01.24.
6. Karahalios H. Appraisal of a Ship’s Cybersecurity efficiency: the case of piracy // J Transp Secur. - 2020. - Vol. 13. - Pp. 179-201. - DOIhttps://doi.org/10.1007/s12198-020-00223-1.
7. Kavallieratos G., Katsikas S. Managing Cyber Security Risks of the Cyber-Enabled Ship // Journal of Marine Science and Engineering. - 2020. - № 8 (768). - 19 s. - DOI:https://doi.org/10.3390/jmse8100768/.
8. Ivanova N. D., Mihalevich I. F., Yakunchikov V. V. Upravlenie riskami informacionnoy bezopasnosti intellektual'nyh transportnyh sistem vnutrennego vodnogo transporta // Sbornik trudov Mezhdunarodnoy nauchno-prakticheskoy konferencii «Transport Rossii: problemy i perspektivy». Sankt-Peterburg, 14-15 noyabrya 2023 g.
9. Kharchenko V., Illiashenko O., Fesenko H., et al. (2022). AI Cybersecurity Assurance for Autonomous Transport Systems: Scenario, Model, and IMECA-Based Analysis. In: Dziech, A., Mees, W., Niemiec, M. (eds) Multimedia Communications, Services and Security. MCSS 2022. Communications in Computer and Information Science. - Vol. 1689. - Pp. 66-79. Springer, Cham. - DOI:https://doi.org/10.1007/978-3-031-20215-5_6.
10. Kharbanda Varun. Journal: Application of Artificial Intelligence in Cyber security (IJSPPC). - 2023. - Vol. 15, No. 1. - Pp. 1-13. - DOI:https://doi.org/10.4018/ijsppc.318676.
11. Ryjov A. P., Mikhalevich I. F. Hybrid intelligence framework for improvement of information security of critical infrastructures. In book: Handbook of Research on Cyber Crime and Information Privacy. Hershey, PA, US 2021. - DOI:https://doi.org/10.4018/978-1-7998-5728-0.ch016.
12. Mikhalevich I. F., Ryjov A. P. Augmented Intelligence Framework for Protecting against Cyberattacks, 2018 // Engineering and Telecommunication (EnTMIPT), Moscow, Russia, 2018. - Pp. 143-145. - DOI:https://doi.org/10.1109/EnT-MIPT.2018.00039.
13. Karyakin V. V. Gibridnye intellektual'nye sistemy kak simbioz estestvennogo i iskusstvennogo intellektov // Rossiya: tendencii i perspektivy razvitiya. - 2022. - № 17 (1). - C. 652-655.
14. Leckiy E. K., Pankratov V. I., Yakovlev V. V. Informacionnye tehnologii na zheleznodorozhnom transporte / pod red. E. K. Leckogo, E. S. Poddavashkina, V. V. Yakovleva. - MoskvaUMK MPS Rossii, 2000. - 678 s.
15. Ryzhov A. P. Ob agregirovanii informacii v nechetkih ierarhicheskih sistemah // Intellektual'nye sistemy. - 2001. - T. 6, Vyp. 1-4. - C. 69-79.
16. Ryzhov A. P. Ocenka i monitoring processov v sociotehnicheskih sistemah i svyazannye s nimi zadachi // Intellektual'nye sistemy. - 2001. - T. 22, Vyp. 2. - C. 129-140.
17. Kerimkhulle S., Dildebayeva Z., Tokhmetov F., et al. Fuzzy Logic and Its Application in the Assessment Transport automation research. No 1, Vol. 10, March 2024 ? of Information Security Risk of Industrial Internet of Things, Symmetry 2023, 15(10), 1958. - DOI:https://doi.org/10.3390/sym15101958.
18. Azam M. H., Hasan M. H., Hassan S., et al. Fuzzy Type-1 Triangular Membership Function Approximation Using Fuzzy C-Means, 2020 // International Conference on Computational Intelligence (ICCI), Bandar Seri Iskandar, Malaysia, 2020. - Pp. 115- 120. - DOI:https://doi.org/10.1109/ICCI51257.2020.9247773.
19. Karelin V. P. Metody i sredstva nechetkogo logicheskogo vyvoda, predstavleniya i zaschity dannyh v intellektual'nyh sistemah upravleniya i podderzhki prinyatiya resheniy // Vestnik TI- UiE. - 2016. - № 2 (24). - S. 5.
20. Cahyaningrum Y., Suryono S., Warsito B. Fuzzy-Expert System for Indicator and Quality Evaluation of Teaching and Learning Processes Online Study Programs // The 6th International Conference on Energy, Environment, Epidemiology, and Information System (ICENIS 2021). - 2021. - Vol. 317. - 11 p. - DOI:https://doi.org/10.1051/e3sconf/202131705021.
21. Rizvi S. S., Mitchell J., Razaque A., et al. A fuzzy inference system (FIS) to evaluate the security readiness of cloud service providers // Journal of Cloud Computing. - 2020. - № 9 (1). - 17 p. - DOIhttps://doi.org/10.1186/s13677-020-00192-9.
22. Dubois D., Prade H. Fuzzy sets and probability: misunderstandings, bridges and gaps // 2nd IEEE International Conference on Fuzzy Systems (FUZZY 1993), IEEE, Mar 1993, San Francisco, United States. - Pp. 1059-1068. - DOI:https://doi.org/10.1109/FUZZY.1993.327367ff.
23. Jain D., Sharma S. K., Dhiman P. Comparative Analysis of Defuzzification Techniques for Fuzzy Output // Journal of algebraic statistics. - 2022. - Vol. 13, № 13. - Pp. 874-882.