Rostov-on-Don, Russian Federation
Purpose: The use of switched reluctance motor (SRM) in the traction system of a high-speed electric train by increasing the performance of its bearings. Using SRM as a traction electric motor, the machine-building complex can solve problems related to the import substitution of components for rolling stock. Methods: The main reasons for the wear of the bearing assembly are the forces of one-way magnetic attraction (OMA). These forces occur when the air gap is asymmetric due to errors in the manufacture of parts and deviations in the assembly of the electrical machine. The OMA forces at a certain displacement are determined using the Maxwell stress tensor. To achieve this, the finite element method embodied in the FEMM program has been used. The dependences of the currents in the corresponding phases on the moment of time required to find the forces have been obtained using the MATLAB program (SIMULINK). Results: Calculation and analysis of OMA forces is carried out at various variants of rotor displacement relative to the axis of symmetry of the stator, including at vertical shift in the direction of gravity action. Calculations have shown that OMA forces can reach significant values. A proposal has been put forward to limit the magnitude of the OMA force to the magnitude of the force at the maximum permissible residual unbalance. Methods are proposed to eliminate irregularity of the air gap at the stage of production. Practical significance: The results of the studies can be used by the developers in the design of the traction SRM, the selection of the structural value of the gap and the assignment of tolerances in its dimensional chain. The use of SRM with a long life of bearings in the traction drive system will create the prerequisites for obtaining a new competitive rolling stock.
High-speed electric train, traction motor, switched reluctance motor, magnetic system, irregularity, forces of one-way magnetic attraction, unbalance force, reliability, bearings
1. Lavrikova Yu. G. Strategicheskie osnovy realizacii potenciala importozamescheniya na primere zheleznodorozhnogo mashinostroeniya / Yu.G. Lavrikova, L.M. Averina // Ekonomicheskie i social'nye peremeny: fakty, tendencii, prognoz. - 2015. - № 3(39). - S. 85-99.
2. Kosoy V. V. Rossii nuzhny vysokoskorostnye magistrali / V. V. Kosoy // Transport Rossiyskoy Federacii. - 2016. - № 5(66). - S. 16-20.
3. Postanovlenie Soveta Federacii Federal'nogo sobraniya RF «O perspektivah razvitiya zheleznodorozhnogo transporta» ot 12 aprelya 2023 g. № 156-SF.
4. Misharin A. S. Vysokoskorostnoy zheleznodorozhnyy transport kak klyuchevoy faktor razvitiya transportnoy sistemy Rossii / A. S. Misharin // Transport Rossiyskoy Federacii. - 2015. - № 7(57). - S. 7-10.
5. Dorohina E. S. Analiz metodov kontrolya teplovogo sostoyaniya asinhronnogo tyagovogo elektrodvigatelya pri ispytaniyah i ekspluatacii / E. S. Dorohina. - URL: http://www.rcit.su/article079.html (data obrascheniya: 25.08.2023).
6. Shevkunova A. V. Povyshenie effektivnosti zavodskogo remonta tyagovyh elektrodvigateley / A. V. Shevkunova, E. E. Miroshnichenko // Izvestiya TulGU. - 2023. - Vyp. 4. - S. 564-569.
7. Vrenken R. H. S. Switched reluctance motor drive for full electric vehicles. Part II: Practical implementation / R. H. S. Vrenken et al. // Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco. - 2013. - Pp. 1-7. - DOI:https://doi.org/10.1109/EVER.2013.6521606.
8. Voron O. A. Improving the Energy Efficiency of Electric Machines For Specialized Railway Rolling Stock / O. A. Voron, A. D. Petrushin // XVIII International Scientific Technical Conference Alternating Current Electric Drives (ACED), Ekaterinburg, Russia. - 2021. - Pp. 1-4. - DOI:https://doi.org/10.1109/ACED50605.2021.9462273.
9. Gaber M. Novel Two-phase 4/6 Switched Reluctance Motor Configuration used in All Electric Ships / M. Gaber, R. Yousef, M. S. Hamad // 23rd International Middle East Power Systems Conference (MEPCON), Cairo, Egypt. - 2022. - Pp. 1-6. - DOI:https://doi.org/10.1109/MEPCON55441.2022.10021713.
10. Thakre M. Performance Analysis of SRM Based on Asymmetrical Bridge Converter For Plug-in Hybrid Electric Vehicle / M. Thakre, J. Mane, V. Hadke // International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India. - 2020. - Pp. 1-6. - DOI:https://doi.org/10.1109/ICPECTS49113.2020.9337059.
11. Skrezhendevskiy V. V. Ventil'no-induktornyy tyagovyy elektrodvigatel' dlya teplovoza / V. V. Skrezhendevskiy, A. A. Gulevich // Problemy bezopasnosti na transporte: materialy mezhdunarodnoy nauchno-prakticheskoy konferencii. - Belarusskiy gosudarstvennyy universitet transporta, 2015. - S. 80-81.
12. Modernizaciya teplovoza TGM6 (TEMP 1tt). - URL: http://promelcom.com/modernizaciya-teplovoza-temp-1tt/ (data obrascheniya: 25.08.2023).
13. Anuchin A. S. Razrabotka cifrovyh sistem effektivnogo upravleniya komplektov tyagovogo elektrooborudovaniya gibridnyh elektricheskih transportnyh sredstv: diss. … d-ra. tehn. nauk / A. S. Anuchin. - M., 2018. - 445 s.
14. Chun G. Investigation of Skewing Effects on the Vibration Reduction of Three-Phase Switched Reluctance Motors / G. Chun, W. Jianhua, S. Mengjie et al. // IEEE Transactions on Magnetic. - 2015. - Vol. 51. - Iss. 9. - Pp. 1-9.
15. Isfahani A. H. Comparison of Mechanical Vibration Between a Double-Stator Switched Reluctance Machine and a Conventional Switched Reluctance Machine / A. H Isfahani, B. Fahimi // IEEE Transactions on Magnetic. - 2014. - Vol. 50. - Iss. 2. - Pp. 293-296.
16. Zhu Z. Q. Analytical model for predicting maximum reduction levels of vibration and noise in switched reluctance machine by active vibration cancellation / Z. Q. Zhu, X. Liu., Z. Pan // IEEE Trans. Energy Convers. - 2011. - Vol. 26. - Iss. 1. - Pp. 36-45.
17. Makino H. Digital PWM-control-based active vibration cancellation for switched reluctance motors / H. Makino, T. Kosaka, N. Matsui // IEEE Trans. Ind. - 2015. - Vol. 51. - Iss. 6. - Pp. 4521-4530.
18. Cao X. Independent control of average torque and radial force in bearingless switched-reluctance motors with hybrid excitations / X. Cao, Z. Deng, G. Yang et al. // IEEE Trans. Power Electron. - 2009. - Vol. 24. - Iss. 5. - Pp. 1376-1385.
19. Mogila V. S. Osobennosti rascheta tyagovyh ventil'no-induktornyh dvigateley / V. S. Mogila, T. S. Korolek // Vestnik Belorusskogo gosudarstvennogo universiteta transporta: Nauka i transport . - 2011. - № 2(23). - S. 21-25.
20. Miroshnichenko E. E. Ocenka vliyaniya sil odnostoronnego magnitnogo prityazheniya na nadezhnost' podshipnikovogo uzla ventil'no-induktornoy elektricheskoy mashiny / E. E. Miroshnichenko // Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Energetika. - 2022. - T. 22. - № 3. - S. 39-51.