AN ENERGY COMPLEX BASED ON A HIGH-SPEED ELECTRIC MACHINE
Abstract and keywords
Abstract (English):
Purpose: The purpose of this study is to develop the scientific basis for designing high-speed electric generators used in conjunction with gas micro-turbines. Methods: To solve the tasks set, the theories of electrical machines; the finite element method; automatic control theory; methods of mathematical analysis, mathematical and circuit modeling; numerical modeling on a PC using FEMM and Matlab Simulink software complexes have been used. The research has been carried out on experimental samples of a high-speed electric generator and confirmed by the results of tests as part of an energy complex based on a gas microturbine in 2019. Results: A complex of scientifically based technical solutions for the design of a high-speed electric generator with an energy complex control system based on a micro-gas turbine has been developed. As a result, a high-speed electric generator for a gas microturbine with a power of 100 kW and a rotation speed of 100,000 rpm has been developed and manufactured. When designing, an asynchronous type electric generator with a massive rotor has been selected. A feature of the developed design is the use of a five-phase stator winding. A control system of an experimental sample of a high-speed electric generator for micro-GTU has been developed. Practical significance: It lies in the development of methods and algorithms for designing high-speed generator equipment for micro-GTU. Recommendations have been developed for choosing the type and configuration of a high-speed electric generator for an electric complex based on a micro-gas turbine. A method is proposed for calculating the parameters of the substitution circuit of a highspeed electric generator, which allows us to determine the parameters of the substitution circuit according to the known configuration of the active layer at the design stage.

Keywords:
High-speed electric generator, control system, asynchronous electric machine with a massive rotor, electromechanical processes, computer modeling
Text
Text (PDF): Read Download
References

1. Kolpahch'yan P. G. Ob odnoy vozmozhnosti izgotovleniya rotorov vysokoskorostnyh elektrogeneratorov s postoyannymi magnitami / P. G. Kolpahch'yan, B. N. Lobov, I. V. Rusakevich i dr. // Trudy X Mezhdunarodnoy konferencii po avtomatizirovannomu elektroprivodu AEP 2018: materialy dokladov konferencii, Novocherkassk, 03-06 oktyabrya 2018 goda. - Novocherkassk: OOO «Lik», 2018. - S. 14-19.

2. Gol'dberg O. D. Proektirovanie elektricheskih mashin: uchebnik dlya vuzov / O. D. Gol'dberg. - M.: Vysshaya shkola, 1984. - 431 s.

3. Kolpakhchyan P. Systems Approach to the Analysis of Electromechanical Processes in the Asynchronous Traction Drive of an Electric Locomotive / P. Kolpakhchyan, A. Zarifian, A. Andruschenko // Rail Transport - Systems Approach. - 2017. - Pp. 67-134.

4. Dolinar D. Calculation of two-axis induction motor model parameters using finite elements / D. Dolinar, R. De Weerdt, R. Belmans et al. // IEEE Transactions on Energy Conversion. - 1997. - Vol. 12. - Iss. 2. - Pp. 133-142.

5. Levi E. General method of magnetising flux saturation modelling in d-q axis models of double-cage induction machines / E. Levi // IEEE Proceedings on Electric Power Applications. - 1997. - Vol. 144. - Iss. 2. - Pp. 101-109.

6. Wilow V. Electromagnetical model of an induction motor in COMSOL Multiphysics: Master’s thesis / V. Wilow // KTH, Electrical Energy Conversion. - 2014. - P. 50.

7. Nocedal J. Numerical Optimization / J. Nocedal, S. Wright // Springer Series in Operations Research and Financial Engineering. - 2nd edition. - Springer-Verlag GmbH, 2006. - 664 p.

8. Kanzow C. Levenberg - Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints / C. Kanzow, N. Yamashita, M. Fukushima // Journal of Computational and Applied Mathematics. - 2004. - - Vol. 172. - Iss. 2. - Pp. 375-397.

9. McGuiness D. T. A performance comparison of different rotor types for high-speed induction motors / D. T. McGuiness, M. O. Gulbahce, D. A. Kocabas // 9th International Conference on Electrical and Electronics Engineering (ELECO). - 2015. - Pp. 584-589.

10. Williamson S. Calculation of cage induction motor equivalent circuit parameters using finite elements / S. Williamson, M. J. Robinson // IEEE Proceedings. Electric Power Applications. - 1991. - Vol. 138. - Iss. 5. - P. 264.

11. Kolpahch'yan P. G. Opredelenie parametrov shemy zamescheniya asinhronnoy elektricheskoy mashiny s massivnym rotorom / P. G. Kolpahch'yan, M. S. Podbereznaya, D. V. Ol'hovatov // Izvestiya vysshih uchebnyh zavedeniy. Elektromehanika. - 2019. - T. 62. - № 5. - S. 31-36. - DOI:https://doi.org/10.17213/0136-3360-2019-5-31-36.

12. Jouili M. Luenberger state observer for speed sensorless ISFOC induction motor drives / M. Jouili, K. Jarray, Ya. Koubaa et al. // Electric Power Systems Research. - 2012. - Vol. 89. - Pp. 139-147. - URL: http://www.sciencedirect.com/science/article/pii/S0378779612000648 (data obrascheniya: 27.12.2019).

13. Zhang Y. A comparative study of Luenberger observer, sliding mode observer and extended Kalman filter for sensorless vector control of induction motor drives / Y. Zhang, Z. Zhao, T. Lu et al. // IEEE Energy Conversion Congress and Exposition. - 2009. - Pp. 2466-2473.

14. Messaoudi M. MRAS and Luenberger Observer Based Sensorless Indirect Vector Control of Induction Motors / M. Messaoudi, S. Lassaad, B. Mouna et al. // Asian Journal of Information Technology. - 2008. - Vol. 7. - Pp. 232-239.

15. Tiwari V. Sensorless speed control of induction motor drive using extended Kalman filter observer / V. Tiwari, S. Das, A. Pal // 2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). - 2017. - Pp. 1-6.

16. Basheer O. Flux and Speed Estimation of Induction Motors using Extended Kalman Filter / O. Basheer, M. Obaid // International Journal of Computer Applications. - 2018. - Vol. 181. - Pp. 27-31.

17. Alonge F. Sensorless Control of Induction-Motor Drive Based on Robust Kalman Filter and Adaptive Speed Estimation / F. Alonge, F. D’Ippolito, A. Sferlazza // IEEE Transactions on Industrial Electronics. - 2014. - Vol. 61. - Pp. 1444-1453.

18. Rumzi N. High performance direct torque control induction motor drive utilising TMS320C31 digital signal processor / N. Rumzi // Digital Signal Processing Solutions, 22.04.2000.

19. Kolpakhchyan P. G. High-Speed Induction Motor State Observer Based on an Extended Kalman Filter / P. G. Kolpakhchyan, A. E. Kochin, B. N. Lobov et al. // Advances in Intelligent Systems and Computing. - 2020. - Vol. 1156. - Pp. 633-644. - DOI:https://doi.org/10.1007/978-3-030-50097-9_65.

Login or Create
* Forgot password?