TAKING INTO ACCOUNT THE VARIABLE NATURE OF THE CALCULATION STANDARDS OF THE TRAIN FORMATION PLAN USING COMPUTATIONAL INTELLIGENCE TECHNOLOGIES
Abstract and keywords
Abstract (English):
Purpose: The train formation plan is the most important logistics tool for cargo transportation management. But the use of discrete values of design standards in its development — the quantity of car-hours for the accumulation of trains and savings from passing of cars through technical station without processing — do not always guarantee the optimal solution due to the objectively existing unevenness of operational work. It is precisely this factor that generates uncertainty, which is not inherently stochastic, and necessitates adjustments to the train formation plan throughout its lifecycle. In addition to fluctuations in car traffic, it causes a change in the values of the calculated standards. To manage such uncertainty, there are special methods, one of which is fuzzy logic. The article describes a way to account for changes in all calculation standards of the train formation plan. Methods: The methods of one of the technologies of computational artificial intelligence are used — fuzzy logic, fuzzy sets and fuzzy mathematics. Results: The dependence has been established on how changes in the calculated parameters of the train formation plan are affected by fluctuations in car flows on specific destinations. The formulas obtained on the basis of known analytical expressions allow us to determine the values of the standards of the formation plan without using auxiliary tables and graphs. Practical significance: The use of the obtained dependencies in the development of the formation plan will improve the accuracy of its calculation by taking into account fluctuations not only of car traffic, but also the values of the calculated standards depending on them.

Keywords:
Computational intelligence, fuzzy sets, fluctuations of car traffic, the system of car traffic organization
Text
Text (PDF): Read Download
References

1. Rutkovskaya D. Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy / D. Rutkovskaya, M. Pilin'skiy, L. Rutkovskiy. - M.: Goryachaya liniya - Telekom, 2006. - 452 s.

2. Siddique N. Computational intelligence: synergies of fuzzy logic, neural network and evolutionary computing / N. Siddique, H. Adeli. - John Wiley & Sons, Ltd, 2013. - 517 p.

3. Shukla A. Computational intelligence / A. Shukla, B. K. Murthy, N. Hasteer et al. // Lecture Notes in Electrical Engineering. - 2022- Vol. 968. - Pp. 1876-1119. - DOI:https://doi.org/10.1007/978-981-19-7346-8.

4. Eberhart R. C. Computational Intelligence: Concepts to Implementations / R. C. Eberhart, Y. Shi. - Elsevier, 2011. - 496 p.

5. Xiao J. Comprehensive optimization of the one-block and two-block train formation plan / J. Xiao, B. Lin // Journal of Rail Transport Planning & Management. - 2016. - DOI:https://doi.org/10.1016/j.jrtpm.2016.09.002.

6. Yaghini M. Solving railroad blocking problem using ant colony optimization algorithm / M. Yaghini, A. Foroughi, B. Nadjari // Applied Mathematical Modelling. - 2011- Vol. 35. - Pp. 5579-5591. - DOI:https://doi.org/10.1016/j.apm.2011.05.018.

7. Yaghini M. A fuzzy railroad blocking model with genetic algorithm solution approach for Iranian railways / M. Yaghini, M. Momeni, M. Sarmadi et al. // Applied Mathematical Modelling. - 2015. - Vol. 39. - Pp. 6114-6125. - DOI:https://doi.org/10.1016/j.apm.2015.01.052.

8. Milenković M. A fuzzy random model for rail freight car fleet sizing problem / M. Milenković, N. Bojović // Transportation Research Part C: Emerging Technologies. - Vol. 33, August 2013. - DOI:https://doi.org/10.1016/j.trc.2013.05.003.

9. Yang L. Railway freight transportation planning with mixed uncertainty of randomness and fuzziness / L. Yang, Z. Gao, K. Li // Applied Soft Computing, January 2011. - Vol. 11. - Iss. 1. - DOI:https://doi.org/10.1016/j.asoc.2009.12.039.

10. Schneider M. Minimising economic losses due to inefficient rescheduling / M. Schneider, N. Nießen // Journal of Rail Transport Planning & Management. - 2016. - DOI:https://doi.org/10.1016/j.jrtpm.2016.05.002.

11. Yang Z. Semi-active Control of High-speed Trains Based on Fuzzy PID Control / Z. Yang, J. Zhang, Z. Chen et al. // Procedia Engineering. - 2011. - Vol. 15. - Pp. 521-525. - DOI:https://doi.org/10.1016/j.proeng.2011.08.099.

12. Teodorovic D. Traffic control and transport planning: a fuzzy sets and neural network approach / D. Teodorovic, K. Vukadinovic. - Kluwer Academic Publishers Group, 1998. - 387 p.

13. Teodorovic D. Transportation Engineering: Theory, Practice and Modeling / D. Teodorovic, M. Janic. - Butterworth-Heinemann, 2016. - 900 p.

14. Dolgopolov P. Optimization of train routes based on neuro-fuzzy modeling and genetic algorithms / P. Dolgopolov, D. Konstantinov, L. Rybalchenko et al. // Procedia Computer Science. - 2019. - Vol. 149. - Pp. 11-18. - DOI:https://doi.org/10.1016/j.procs.2019.01.101.

15. Alekseychik T. The choice of transport for freight and passenger traffic in the region, using econometric and fuzzy modeling / T. Alekseychik, T. Bogachev, V. Bogachev et al. // Procedia Computer Science. - 2017. - Vol. 120. - Pp. 830-834. - DOI:https://doi.org/10.1016/j.procs.2017.11.314.

16. Badetskii A. P. Improving the Stability of the Train Formation Plan to Uneven Operational Work / A. P. Badetskii, O. A. Medved // Transportation Research Procedia, Novosibirsk, 2021. - Pp. 559-567. - DOI:https://doi.org/10.1016/j.trpro.2021.02.108.

17. Kukushkina Ya. V. Zavisimost' velichiny perehodyaschego ostatka ot nakopleniya smezhnyh sostavov / Ya. V. Kukushkina // Izvestiya Peterburgskogo universiteta putey soobscheniya. - 2010. - № 3(24). - S. 132-140.

18. Pankov A. N. O sostavoobrazovanii na sortirovochnyh stanciyah / A. N. Pankov, V. A. Kudryavcev, Ya. V. Kukushkina i dr. // Zheleznodorozhnyy transport. - 2016. - № 3. - S. 45-50.

19. Zadeh L. A. Fuzzy Sets / L. A. Zadeh // Information and Control. - 1965. - Vol. 8. - Pp. 338-353.

20. Badeckiy A. P. Ispol'zovanie samonastraivayuschihsya nechetkih modeley dlya prinyatiya resheniy o korrektirovke naznacheniy plana formirovaniya poezdov / A. P. Badeckiy, O. A. Medved' // Transport Rossii: problemy i perspektivy - 2016: materialy mezhdunarodnoy nauchno-prakticheskoy konferencii. - SPb.: IPTRAN, 2016. - S. 221-224.

21. Os'minin A. T. Modul' operativnoy korrektirovki naznacheniy plana formirovaniya poezdov / A. T. Os'minin, I. I. Os'minina, A. P. Badeckiy i dr. // Intellektual'nye sistemy upravleniya na zheleznodorozhnom transporte. Komp'yuternoe i matematicheskoe modelirovanie (ISUZhT-2016): trudy pyatoy nauchno-tehnicheskoy konferencii. - M.: NIIAS, 2016. - S. 86-89.

22. Kudryavcev V. A. Uchet kolebaniy vagonopotokov pri raschete plana formirovaniya poezdov / V. A. Kudryavcev, A. P. Badeckiy // Izvestiya Peterburgskogo universiteta putey soobscheniya. - 2012. - № 3. - S. 10-16.

23. Badeckiy A. P. Primenenie peremennyh normativov v raschete plana formirovaniya poezdov kak sposob ucheta neravnomernosti vagonopotokov / A. P. Badeckiy // Intellektual'nye sistemy upravleniya na zheleznodorozhnom transporte. Komp'yuternoe i matematicheskoe modelirovanie (ISUZhT-2019): trudy vos'moy nauchno-tehnicheskoy konferencii. - M.: NIIAS, 2019. - S. 123-126.

24. Badeckiy A. P. Razrabotka raschetnyh vagonopotokov plana formirovaniya poezdov s uchetom ih neravnomernosti / A. P. Badeckiy // Vestnik transporta Povolzh'ya. - 2013. - № 3. - S. 53-60.

Login or Create
* Forgot password?