Russian Federation
Purpose: To analyze the possible use of combined structures for bridge superstructures, to expand the range of steel-reinforced concrete structures, to explore innovative structural solutions for beams with low material consumption and increased reliability and durability. Methods: Analysis of the advantages of known combined structures, of materials used for their design, calculation of design options of bridge superstructures with the use of existing engineering techniques and involving calculation programs. Results: Traditional design solutions of bridge superstructures do not always have sufficient reliability and durability. A number of effective beam structures have been developed at the Department of “Building Structures, Buildings and Constructions” of the PGUPS, which can be used in bridge structures. New developments of beams with the use of steel-reinforced concrete and steel-fiber concrete are presented. A combined design of the bridge superstructure with the use of steel-reinforced concrete and steel-fiber concrete, protected by patents for inventions, is proposed. Static and constructive calculation of superstructure variants has been performed with the use of the SCAD computing complex, the stress-strain state of the structure has been analyzed, the reduction of material consumption, labor intensity and other advantages of the combined superstructure design in comparison with traditional solutions of superstructure costructions made of steel and reinforced concrete have been considered. Practical significance: The advantages of combined constructions for bridge structures have been identified, a decrease in the material intensity and labor intensity of the proposed design solutions has been established with an increase in the bending stiffness of the superstructure, its reliability and durability. The proposed structural solutions of beams can be used for bridges of large spans in conditions of heavy dynamic loads.
Bridges, superstructure, steel-reinforced concrete structure, combined beams, steel-fiber concrete, pipe concrete, material intensity, reliability, durability
1. Veselov V. Gibridnye balochnye konstrukcii transportnyh zsooruzheniy / V. Veselov, K. Talantova // Konspekty lekciy po setyam i sistemam 402 LNNS. - C. 278. - DOI:https://doi.org/10.1007/978-3-030-96380-4_31.
2. Belyy A. A. Primenenie kompozitnyh materialov pri remonte mostovyh sooruzheniy / A. A. Belyy, E. S. Karapetov, E. S. Cygankova i dr. // Kompozitnye sistemy na ob'ektah podzemnogo i grazhdanskogo stroitel'stva: sbornik trudov Pervoy Mezhdunarodnoy nauchno-prakticheskoy konferencii, Sankt-Peterburg, 27-28 sentyabrya 2018 goda. - Sankt-Peterburg: Peterburgskiy gosudarstvennyy universitet putey soobscheniya Imperatora Aleksandra I, 2019. - S. 47-54.
3. Veselov V. Primenenie stalezhelezobetonnyh balochnyh konstrukciy v transportnom stroitel'stve / V. Veselov // Konspekty lekciy po setyam i sistemam 402 LNS. - C. 269. - DOI:https://doi.org/10.1007/978-3-030-96380-4_30.
4. Cygankova E. S. Primenenie kompozitnyh materialov dlya obespecheniya nadezhnosti zhelezobetonnyh mostov / E. S. Cygankova, A. A. Belyy, E. S. Karapetov // Aktual'nye problemy bezopasnosti dorozhnogo dvizheniya: materialy 71-y Vserossiyskoy nauchno-prakticheskoy konferencii studentov, aspirantov i molodyh uchenyh, Sankt-Peterburg, 04-06 aprelya 2018 goda. - Sankt-Peterburg: Sankt-Peterburgskiy gosudarstvennyy arhitekturno-stroitel'nyy universitet, 2018. - S. 32-36.
5. Smirnov V. N. Stroitel'stvo mostovyh sooruzheniy / V. N. Smirnov; FGBU DPO «Uchebno-metodicheskiy centr po obrazovaniyu na zheleznodorozhnom transporte». - M.: FGBU DPO «Uchebno-metodicheskiy centr po obrazovaniyu na zheleznodorozhnom transporte», 2023. - 456 s.
6. Dmitrenko E. A. Osnovnye tipy defektov i povrezhdeniy zhelezobetonnyh konstrukciy transportnyh sooruzheniy, prichiny ih vozniknoveniya / E. A. Dmitrenko, N. V. Pochtar // Vestnik Donbasskoy nacional'noy akademii stroitel'stva i arhitektury. - 2016. - № 3(119). - S. 134-138.
7. Karapetov E. S. Ekspluatacionnaya nadezhnost' mostovyh sooruzheniy v surovyh klimaticheskih usloviyah / E. S. Karapetov, A. A. Belyy // Putevoy navigator. - 2020. - № 43(69). - S. 2.
8. STO 002494680-0032-2004. Standart organizacii. Stalezhelezobetonnye proletnye stroeniya avtodorozhnyh mostov. Rekonstrukciya i remont.
9. SP 159.1325800.2014. Stalezhelezobetonnye proletnye stroeniya avtodorozhnyh mostov. Pravila rascheta.
10. GOST R 59624-2021. Dorogi avtomobil'nye obschego pol'zovaniya. Mostovye sooruzheniya. Proektirovanie stalezhelezobetonnyh elementov.
11. Patent № 2745287 Rossiyskaya Federaciya, MPK E04C 3/293. Stalezhelezobetonnaya balka / V. V. Veselov, V. V. Egorov. - Zayavl. 07.09.2020; opubl. 23.03.2021, Byul. № 9.
12. Patent № 2627810 Rossiyskaya Federaciya, MPK E04C 3/07, E04C 3/293, E04V 1/30. Stalebetonnaya balka / V. V. Egorov, V. V. Veselov. - Zayavl. 19.05.2016; opubl. 11.08.2017, Byul. № 23.
13. Patent № 176462 Rossiyskaya Federaciya, MPK E04S 3/293, E04S 3/07, E04B 1/30. Mnogoproletnaya nesuschaya balka / V. V. Veselov, A. M. Fedorov. - Zayavl. 12.09.2017; opubl. 19.01.2018, Byul. № 2.
14. Patent № 2789683 Rossiyskaya Federaciya, MPK E04C 3/29. Gibridnaya balka / K. V. Talantova, V. V. Veselov, D. V. Balaev, E. D. Frolova. - Zayavl. 13.07.2022; opubl. 07.02.2023, Byul. № 4.
15. Patent № 182163 Rossiyskaya Federaciya, MPK E04S 3/293. Stalebetonnaya ferma / V. V. Veselov. - Zayavl. 07.05.2018; opubl. 06.08.2018, Byul. № 22.
16. SP 16.13330.2017. Stal'nye konstrukcii Aktualizirovannaya redakciya SNiP II-23-81.
17. SP 63.13330.2018. Betonnye i zhelezobetonnye konstrukcii. Osnovnye polozheniya.
18. SP 266.1325800.2016. Konstrukcii stalezhelezobetonnye. Pravila proektirovaniya.
19. Metody rascheta stalebetonnyh balok / V. V. Veselov, A. M. Fedorov // Sovremennoe promyshlennoe i grazhdanskoe stroitel'stvo. - 2018. - T. 14. - № 2. - S. 97-107.
20. Talantova K. V. Optimizaciya rashoda stal'noy fibry pri proektirovanii konstrukciy na osnove stalefibrobetona / K. V. Talantova // Izvestiya vuzov. Stroitel'stvo. - Novosibirsk, 2014. - № 8. - S. 99-106.