METHOD FOR DETERMINING DYNAMIC PRIORITIES OF CARGO OPERATIONS FOR OPTIMIZING THE USE OF SELF-PROPELLED UNITS IN RAILWAY INDUSTRIAL TRANSPORT AND TECHNOLOGICAL SYSTEMS
Abstract and keywords
Abstract (English):
The application of fuzzy logic is considered in optimizing the sequence of operations that involve the use of self-propelled units in industrial railway transportation. The consequences of using constant values calculated analytically as operation priorities have been analyzed. The type of queue discipline and the specifics of constraints on the stay of requests in the queue, characteristic of railway industrial transport and technological systems, are described. The advantages and disadvantages of existing methods for queuing freight operations specified in the daily work plan in railway industrial transport and technological systems are investigated. Limitations arising from the use of classical scheduling theory methods have been identified. Finding the optimal sequence of operations in railway industrial transport and technological systems involves simultaneous movement planning for multiple mobile units, which is not considered in classical graph theory. The classical problem of finding the shortest path and its known solving algorithms only work with static graphs, while railway industrial transport and technological systems are characterized by rapid changes in the graph's state. The problems caused by the dynamic nature of the graph's state in railway industrial transport and technological systems have been analyzed. The application of fuzzy logic methods will enable the construction of an optimal sequence of operations based on incomplete and imprecise information and address several operational planning tasks for freight operations without precise calculations. The expected result of applying the method for determining dynamic operation priorities implemented in the neuro-fuzzy module is an increase in the adaptability of operational planning for freight operations and a reduction in the time of engagement and the required number of self-propelled mobile units.

Keywords:
operational wagon flow management, queue waiting time, queue discipline, priority assignment, optimization of mobile unit utilization, neuro-fuzzy module
Text
Text (PDF): Read Download
References

1. Sharov V. A. Novye riski pri realizacii edinogo integrirovannogo planirovaniya na zheleznodorozhnom transporte obschego pol'zovaniya / V. A. Sharov // Nauka i tehnika transporta. - 2016. - № 2. - S. 87-93.

2. Podorin A. A. Analiz i modelirovanie vagonopotokov dlya zadach organizacii zheleznodorozhnyh perevozok na osnove statisticheskih i prognoznyh dannyh v usloviyah ih neodnorodnosti / A. A. Podorin, S. L. Schepanov, D. V. Rubcov // Upravlenie razvitiem krupnomasshtabnyh sistem (MLSD'2021): trudy Chetyrnadcatoy mezhdunarodnoy konferencii. - Moskva, 27-29 sentyabrya 2021 goda / Pod obsch. red. S. N. Vasil'eva, A. D. Cvirkuna. - M.: Institut problem upravleniya im. V. A. Trapeznikova RAN, 2021. - S. 1037-1041. - DOI:https://doi.org/10.25728/6989.2021.59.54.001.

3. Bedrin D. S. Transformaciya metodologii planirovaniya i prognozirovaniya perevozok gruzov na zheleznodorozhnom transporte / D. S. Bedrin // Byulleten' rezul'tatov nauchnyh issledovaniy. - 2020. - № 4. - S. 5-23. - DOI:https://doi.org/10.20295/2223-9987-2020-4-5-23.

4. Zolotarev S. A. Metodika formirovaniya sostava gruzovogo poezda na putyah promyshlennyh predpriyatiy vagonami razlichnyh operatorov / S. A. Zolotarev, A. D. Sirazetdinova // Byulleten' transportnoy informacii. - 2017. - № 8(266). - S. 3-7.

5. Bel'nickiy D. S. Problema izbytochnogo parka gruzovyh vagonov / D. S. Bel'nickiy, A. P. Ivanov, I. N. Pankratov i dr. // Vestnik transporta. - 2015. - № 4. - S. 19-21.

6. Yugrina O. P. Osobennosti effektivnogo ispol'zovaniya privatnogo vagonnogo parka operatorskoy kompanii / O. P. Yugrina, S. Yu. Sosnin // Vestnik UrGUPS. - Ekaterinburg: UrGUPS, 2017. - № 1(33). - S. 84-90.

7. Sergeeva T. G. Sovremennye metody upravleniya parkom privatnyh vagonov / T. G. Sergeeva // Byulleten' rezul'tatov nauchnyh issledovaniy. - 2022. - № 1. - S. 95-102. - DOI:https://doi.org/10.20295/2223-9987-2022-1-95-102.

8. Solop I. A. Prichinno-sledstvennyy analiz vypolneniya nadezhnosti dostavki gruzov zheleznodorozhnym transportom v adres potrebiteley Yuzhnogo regiona i portov Azovo-Chernomorskogo basseyna / I. A. Solop, E. A. Chebotareva // Inzhenernyy vestnik Dona. - 2018. - № 3(50). - S. 54.

9. Bulygina O. V. Naznachenie prioritetov v tehnologicheskih habah na osnove imitacionnogo modelirovaniya i nechetkoy logiki / O. V. Bulygina, A. A. Emel'yanov, N. Z. Emel'yanova // Prikladnaya informatika. - 2017. - T. 12. - № 5(71). - S. 71-92.

10. Mogilev A. A. Obzor metodov resheniya zadach teorii raspisaniy / A. A. Mogilev // Informatika, vychislitel'naya tehnika i inzhenernoe obrazovanie. - 2019. - № 4(37). - S. 19-32.

11. Baginova V. V. Primenenie algoritmov marshrutizacii agenta pri razrabotke diskretno-sobytiynyh imitacionnyh modeley s ispol'zovaniem instrumentov zheleznodorozhnoy biblioteki Anylogic / V. V. Baginova, D. V. Kuz'min // Vestnik Ural'skogo gosudarstvennogo universiteta putey soobscheniya. - 2023. - № 2(58). - S. 109-118. - DOI:https://doi.org/10.20291/2079-0392-2023-2-109-118.

12. Speranskiy D. V. Poisk optimal'nyh putey v nechetkih grafah / D. V. Speranskiy // Avtomatika na transporte. - 2022. - T. 8. - № 4. - S. 418-426. - DOI:https://doi.org/10.20295/2412-9186-2022-8-04-418-426.

13. Chislov O. N. Neyrosetevoe issledovanie transportnyh sistem / O. N. Chislov, N. N. Lyabah, M. V. Kolesnikov i dr. // Transport: nauka, tehnika, upravlenie. Nauchnyy informacionnyy sbornik. - 2021. - № 10. - S. 9-13. - DOI:https://doi.org/10.36535/0236-1914-2021-10-2.

14. Efanov D. V. Principy avtomatizacii processov upravleniya dvizheniem na zheleznyh dorogah promyshlennyh predpriyatiy / D. V. Efanov // Transport Rossiyskoy Federacii. - 2019. - № 6(85). - S. 27-33.

15. Lekarev A. G. The Integrated Approach to Automation and Digitalization of the Transport Processes in the Industrial Enterprises / A. G. Lekarev, M. G. Ammosov, D. V. Efanov et al. // Proceedings of 18th IEEE East-West Design & Test Symposium (EWDTS’2020), Varna, Bulgaria, September 4-7, 2020. - Pp. 346-350. - DOI:https://doi.org/10.1109/EWDTS50664.2020.9224687.

16. Tang R. A Literature Review of Artificial Intelligence Applications in Railway Systems / R. Tang, L. De Donato, N. Bešinović et al. // Transportation Research. Part C: Emerging Technologies. - 2022. - DOI:https://doi.org/10.1016/j.trc.2022.103679.

17. Bešinović N. Artificial Intelligence in Railway Transport: Taxonomy, Regulations, and Applications / N. Bešinović et al. // IEEE Transactions on Intelligent Transportation Systems, Sept. 2022. - Vol. 23. - Iss. 9. - Pp. 14011-14024. - DOI:https://doi.org/10.1109/TITS.2021.3131637.

18. Cerreto F. Application of Data Clustering to Railway Delay Pattern Recognition / F. Cerreto, B. F. Nielsen, O. A. Nielsen et al. // Journal of Advanced Transportation. - 2018. - Vol. 2018, Article ID 6164534. - 18 p. - DOI:https://doi.org/10.1155/2018/6164534.

19. Zhu Yo. Dynamic railway timetable rescheduling for multiple connected disruptions / Yo. Zhu, R. Goverde // Transportation Research. Part C: Emerging Technologies. - 2021. - Iss. 125. - DOI:https://doi.org/10.1016/j.trc.2021.103080.

20. Binder S. The multi-objective railway timetable rescheduling problem / S. Binder, Yo. Maknoon, M. Bierlaire // Transportation Research Part C: Emerging Technologies. - 2016. - Iss. 78. - DOI:https://doi.org/10.1016/j.trc.2017.02.001.

21. Sivickiy D. A. Analiz opyta i perspektiv primeneniya iskusstvennyh neyronnyh setey na zheleznodorozhnom transporte / D. A. Sivickiy // Vestnik Sibirskogo gosudarstvennogo universiteta putey soobscheniya. - 2021. - № 2(57). - S. 33-41. - DOI:https://doi.org/10.52170/1815-9265_2021_57_33.

22. Ponyatov A. A. Vozmozhnosti primeneniya neyrosetevyh tehnologiy na zheleznodorozhnom transporte / A. A. Ponyatov // Aktual'nye problemy sovremennogo transporta. - 2022. - № 2-3(9-10). - S. 62-70.

23. Obuhov A. D. Primenenie neyrosetevyh tehnologiy v upravlenii sortirovochnoy stanciey / A. D. Obuhov // Avtomatika, svyaz', informatika. - 2017. - № 7. - S. 14-16

24. Dolgopolov P. Optimization of train routes based on neuro-fuzzy modeling and genetic algorithms / P. Dolgopolov, D. Konstantinov, L. Rybalchenko et al. // Procedia Computer Science. - 2019. - Iss. 149. - Pp. 11-18. - DOI:https://doi.org/10.1016/j.procs.2019.01.101.

25. Krakovskiy Yu. M. Binarnoe prognozirovanie dinamicheskih pokazateley na osnove metodov mashinnogo obucheniya / Yu. M. Krakovskiy, O. K. Kuklina // Vestnik Tomskogo gosudarstvennogo universiteta. Upravlenie, vychislitel'naya tehnika i informatika. - 2023. - № 62. - S. 50-55. - DOI:https://doi.org/10.17223/19988605/62/5.

26. Goncharova N. A. Specifika operativnogo upravleniya vagonopotokami v zheleznodorozhnyh promyshlennyh transportno-tehnologicheskih sistemah / N. A. Goncharova // Transportnye sistemy: sbornik materialov Mezhdunarodnoy nauchnoy onlayn-konferencii dlya molodyh uchenyh i aspirantov, Sankt-Peterburg, 29 noyabrya 2022 goda. - Sankt-Peterburg: Sankt-Peterburgskiy politehnicheskiy universitet Petra Velikogo, 2023. - S. 74-77. - DOI:https://doi.org/10.18720/SPBPU/2/id23-14.

27. Kolesnikov V. I. Intellektualizaciya transportnyh processov na osnove gibridnyh tehnologiy i mul'tiagentnyh sistem / V. I. Kolesnikov, S. M. Kovalev, V. N. Ivanchenko // Vestnik Rostovskogo gosudarstvennogo universiteta putey soobscheniya. - 2012. - № 1(45). - S. 107-113.

28. Bogdanova L. Neuro-fuzzy-based mathematical model of dispatching of an industrialrailway junction / L. Bogdanova, S. Nagibin, D. Loskutov // Bulletin of Electrical Engineering and Informatics. - 2023. - Vol. 12. - Iss. 1. - Pp. 502-513. - DOI:https://doi.org/10.11591/eei.v12i1.4055.

Login or Create
* Forgot password?