FORECASTING RANDOM PROCESSES IN INTELLIGENT TRANSPORT SYSTEMS WITH SINGULAR PERTURBATIONS
Abstract and keywords
Abstract (English):
Forecasting random perturbations allows improving the control quality in intelligent transport systems and ensuring the efficient operation of diagnostic systems. Several works are known where extrapolator models based on Chebyshev polynomials orthogonal on equidistant points are presented. These models use a predictive polynomial whose coefficients are computed using the least squares criterion. Additionally, an analysis of forecast errors for random stationary input signals has been conducted. At the same time, in the case of non-stationary input signals, singular perturbations may occur, the influence of which on the extrapolator leads to significant forecast errors. This article presents an example of the occurrence of additive perturbations that arise in automatic train control systems. An analytical expression has been derived, and calculations of forecast error magnitudes in the presence of singular perturbations have been conducted. The analysis of the calculation results allows determining the influence of extrapolator parameters on the forecast error magnitude, highlighting the necessity of detecting singular perturbations, and excluding their influence on the forecast error magnitude. The article discusses an algorithm for detecting singular perturbations and their exclusion during the forecasting process. The conclusion is drawn about the effectiveness of using extrapolators for random perturbations with the exclusion of singular perturbations in intelligent systems for automatic train control in subway transportation.

Keywords:
forecasting, extrapolators, forecast errors, random perturbations, singular perturbations, detection of singular perturbations, algorithm, intelligent system, automatic control, subway trains
Text
Publication text (PDF): Read Download
References

1. Petropoulos F. Forecasting: Theory and practice / F. Petropoulos, Ya. Kang, F. Li et al. // International Journal of Forecasting. - 2022. - Vol. 38. - Iss. 3, July - September. - Pp. 705-871. - DOI:https://doi.org/10.1016/j.ijforecast.2021.11.001.

2. Silitonga S. Survey on damage mechanics models for fatigue life prediction / S. Silitonga, J. Maljaars, F. Soetens et al. // Heron. - 2013. - Vol. 58. - Iss. 1. - Pp. 25-60.

3. Kim Y. Introduction to Kalman Filter and Its Applications / Y. Kim, H. Bang // IntechOpen. - 2018. - DOI:https://doi.org/10.5772/intechopen.80600.

4. Grewal M. S. Kalman Filtering: Theory and Practice with MATLAB / M. S. Grewal, A. P. Andrews // John Wiley & Sons. - 2015. - P. 640.

5. Asadi F. Adaptive Kalman Filter for Noise Estimation and Identification with Bayesian Approach / F. Asadi, S. H. Sadati // World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences. - 2021. - Vol. 15. - Iss. 10.

6. Serradilla O. Deep learning models for predictive maintenance: a survey, comparison, challenges and prospects / O. Serradilla, E. Zugasti, J. Rodriguez et al. // Applied Intelligence. - 2022. - DOI:https://doi.org/10.1007/s10489-021-03004-y.

7. Mosavi A. Structural Damage Diagnosis and Prediction Using Machine Learning and Deep Learning Models: Comprehensive Review of Advances / A. Mosavi. - Preprints.org 2019, 2019120149. - DOI:https://doi.org/10.20944/preprints201912.0149.v1.

8. Byington Carl S. Handbook of Multisensor Data Fusion / S. Byington Carl, K. Garga Amulya // Ch. 23. Data Fusion for Developing Predictive Diagnostics for Electromechanical Systems // CRC Press, 2009.

9. Bezerra A. The use of artificial intelligence for assessing an overpass affected by Alkali-Silica Reaction (ASR) / A. Bezerra, C. Trottier, L. F. M. Sanchez // Ch. 40. Data Fusion for Developing Predictive Diagnostics for Electromechanical Systems // CRC Press. - 2022. - Pp. 354-361. - DOI:https://doi.org/10.1201/9781003322641-40.

10. Smit N. Guide for the Monitoring, Diagnosis and Prognosis of Large Motors / N. Smit, Convener, S. Bhumiwat et al. // Cigre Working Group A1.26. - December 2013. - P. 53.

11. Gulgec N. S. Structural Damage Detection Using Convolutional Neural Networks / N. S. Gulgec, M. Takác, S. Pakzad // Model Validation and Uncertainty Quantification. - 2022. - Vol. 3. - Pp. 331-337. - DOI:https://doi.org/10.1007/978-3-319-54858-6_33.

12. Kashevarova G. G. Technical diagnostics of reinforced concrete structures using intelligent systems / G. G. Kashevarova, Yu. L. Tonkov // Magazine of Civil Engineering. - 2020. - Iss. 1(93). - Pp. 13-26. - DOI:https://doi.org/10.18720/MCE.93.2.

13. Bulgakov A. Cyber-physical System for Diagnosing and Predicting Technical Condition of Servo-drives of Mechatronic Sliding Complex during Construction of High-rise Monolithic Buildings / A. Bulgakov, T. Bock, T. Kruglova // 2020 Proceedings of the 37th ISARC, Kitakyushu, Japan. - Pp. 339-346.

14. Masalimov K. A. Primenenie dvunapravlennyh setey dolgoy kratkosrochnoy pamyati dlya opredeleniya iznosa rezhuschego instrumenta stankov s chislovym programmnym upravleniem v processe ekspluatacii / K. A. Masalimov // Modelirovanie, optimizaciya i informacionnye tehnologii. - 2021. - T. 9, № 4(35). - DOI:https://doi.org/10.26102/2310-6018/2021.35.4.014.

15. Byington C. S. Handbook of Multisensor Data Fusion / C. S. Byington, A. K. Garga // Ch. 17. Studies and Analyses within Project Correlation: An In-Depth Assessment of Correlation Problems and Solution Techniques // CRC Press, 2009.

16. Baranov L. A. Centralizovannoe upravlenie dvizheniem poezdov gorodskih zheleznyh dorog sovremennogo megapolisa / L. A. Baranov, E. P. Balakina, S. E. Ikonnikov i dr. // Nauka i tehnika transporta. - 2020. - № 1. - S. 30-38.

17. Baranov L. A. Vliyanie prognoza rassoglasovaniya na kachestvo upravleniya v zamknutyh avtomaticheskih sistemah / L. A. Baranov, O. E. Pudovikov, E. P. Balakina // Elektrotehnika. - 2022. - № 9. - C. 8-15.

18. Baranov L. A. Metropoliten Mehiko. Algoritm dvizheniya / L. A. Baranov, P. Yu. Vorob'ev // Mir transporta. - 2012. - № 4. - C. 106-113.

19. Baranov L. A. Kvantovanie po urovnyu i vremennaya diskretizaciya v cifrovyh sistemah upravleniya / L. A. Baranov. - M.: Energoatomizdat, 1990. - C. 304.

20. Berezin I. S. Metody vychisleniy / I. S. Berezin, I. P. Zhidkov. - M.: Fizmatgiz, 1959. - T. 1. - C. 464.

21. Cypkin Ya. Z. Teoriya lineynyh impul'snyh sistem / Ya. Z. Cypkin. - M.: Fizmatizdat, 1963. - C. 968.

22. Baranov L. A. Prognozirovanie sluchaynyh processov na baze mnogochlenov, ortogonal'nyh na mnozhestve ravnootstoyaschih tochek / L. A. Baranov, E. P. Balakina // Elektrotehnika. - 2020. - № 9. - C. 39-46.

23. Miln V. E. Chislennyy analiz / V. E. Miln. - M.: IL, 1951. - 292 s.

Login or Create
* Forgot password?