VEHICLE TRACKING SYSTEM BASED ON UNMANNED AERIAL VEHICLES USING RADIO FREQUENCY IDENTIFICATION TECHNOLOGY AND INFRARED CAMERAS
Abstract and keywords
Abstract (English):
The article discusses the main principles of operation and advantages of using unmanned aerial vehicles as an additional means of monitoring road traffic, analyzing and predicting traffic jams in real-time, as well as serving as a system for monitoring and assessing the condition of road surfaces and infrastructure. Particular attention is paid to the use of small unmanned aerial vehicles as an active complex for ensuring transportation safety. The possibilities of a three-channel monitoring system (visible, infrared, and radio-technical ranges) for determining the coordinates, characteristics, speeds, and a valid registration of a vehicle are considered. The advantages of the proposed method are described, such as increasing the accuracy and speed of information processing, the possibility of reducing costs for transport control. In particular, the article describes the methods of using radio-frequency identification tags to improve the efficiency of traffic management, prevent traffic congestion, optimize routes, and reduce the risks of dangerous road situations. The article presents a prospective application of infrared cameras for detecting and preventing accidents, analyzing traffic density and driver behavior. A research study has been conducted to explore the possibility of using the aforementioned methods in parallel with unmanned aerial vehicles to propose the development of a fully automated system for monitoring and controlling road transport. The relevance of using a small unmanned aerial vehicle to improve the quality of monitoring road traffic and traffic safety is presented.

Keywords:
unmanned aerial vehicle, methods of transport recognition, radio frequency identification of objects, navigation parameters, measurement complex layout, flight route, object recognition, safe road
Text
Text (PDF): Read Download
References

1. Viola P. Robust real-time object detection / P. Viola, M. J. Jones // International Journal of Computer Vision. - 2004. - Vol. 57(2). - Pp. 137-154.

2. Lienhart R. An extended set of haar-like features for rapid object detection / R. Lienhart, J. Maydt // In Image Processing. - 2002. - Vol. 1. - Pp. 900-903.

3. Bovik A. C. Content-weighted video quality assessment using a three-component image model / A. C. Bovik, Ch. Li // Journal of Electronic Imaging. - 2010. - Vol. 19(1). - Pp. 011003-1-011003-9.

4. Sirota A. A. Dvuhetapnyy algoritm obnaruzheniya i ocenivaniya granic ob'ektov na izobrazheniyah v usloviyah additivnyh pomeh i deformiruyuschih iskazheniy / A. A. Sirota, A. I. Solomatin, E. V. Voronova // Komp'yuternaya optika. - 2009. - T. 34. - № 1. - S. 109-117.

5. Parker J. R. Algorithms for Image Processing and Computer Vision / J. R. Parker. - New York: John Wiley & Sons, Inc., 1997. - Pp. 23-29.

6. Bo R. On path planning for UAVs based on adaptive ant system algorithm / R. Bo, Yu Lei, H. Lixun // Electronics Optics and Control. - 2007. - Vol. 6. - Iss. 14. - Pp. 36-39.

7. Aguiar A. P. Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty / A. P. Aguiar, J. P. Hespanha // IEEE Transactions on Automatic Control. - 2007. - Vol. 52. - Iss. 8. - Pp. 1362-1379.

8. Khoroshev V. Actual State Monitoring of Railway Switch Point Blades Based on RFID Technology / V. Khoroshev, G. Osadchy, D. Efanov et al. // Proceedings of 15th IEEE East-West Design & Test Symposium (EWDTS’2017), Novi Sad, Serbia, September 29 - October 2, 2017. - Pp. 283-288. - DOI:https://doi.org/10.1109/EWDTS.2017.8110084.

9. Tan' L. Planirovanie marshruta poleta malogabaritnyh letatel'nyh apparatov v usloviyah neopredelennosti v real'nom rezhime vremeni / L. Tan', A. V. Fomichev // Mezhdunar. nauch.-tehn. konf. «Informacionnye sistemy i tehnologii» (IST-2015). - Nizhniy Novgorod, 2015. - S. 273-276.

10. Canny J. A. Computational Approach to Edge Detection / J. A. Canny // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 1986. - Iss. 6. - Pp. 679-698.

11. Wang Z. Multi-scale structural similarity for image quality assessment / Z. Wang, E. P. Simoncelli, A. C. Bovik // Proceedings of 37th IEEE Asilomar Conference on Signals, Systems and Computers, Pacific group, 2003.

12. Hasan N. Roadmap for RFID Implementation in Libraries: Issues and Challenges / N. Hasan // International Journal of Information, Library and Society. - 2014. - Iss. 3(1). - Pp. 65-71.

13. Dunbar W. B. Model predictive control of coordinated multi-vehicle formations / W. B. Dunbar, R. M. Murray // Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas. - 2002. - Vol. 4. - Pp. 4631-4636.

14. Raspopov B. Ya. Avtopilot mini-bespilotnogo letatel'nogo apparata / B. Ya. Raspopov // Mehatronika, avtomatizaciya, upravlenie. - 2008. - № 10. - S. 19.

15. Yakovlev K. S. Metod avtomaticheskogo planirovaniya traektorii bespilotnogo letatel'nogo apparata v usloviyah ogranicheniy na dinamiku poleta / K. S. Yakovlev, D. A. Makarov, E. S. Baskin // Iskusstvennyy intellekt i prinyatie resheniy. - 2014. - № 4. - S. 3.

16. Karaman S. Sampling-based algorithms for optimal motion planning / S. Karaman, E. Frazzoli // The International Journal of Robotics Research. - 2011. - Vol. 30. - Iss. 7. - Pp. 846-894.

17. Lee D. Robust tracking control of an underactuated quadrotor aerial-robot based on a parametric uncertain model / D. Lee, T. Burg, D. Dawson et al. // IEEE Intern. Conf. on Systems, Man and Cybernetics (SMC 2009). - 2009. - Pp. 3187-3192.

18. Nehin S. S. Avtomatizaciya fotogrammetricheskogo sbora trehmernoy informacii na CFS / S. S. Nehin, S. V. Oleynik // Izvestiya vuzov. Geodeziya i aerofotos'emka. - 2011. - № 2. - S. 70-74.

19. Lapshenkov E. M. Vozmozhnye metody ocenki poter' pri szhatii izobrazheniya v sistemah opticheskoy defektoskopii / E. M. Lapshenkov // Sbornik trudov nauchnoy konferencii MGUPI «Aktual'nye problemy priborostroeniya, informatiki i social'no-ekonomicheskih nauk», 2010. - S. 52-56.

20. Gen K. K. Planirovanie marshruta dlya kvadrokoptera v neizvestnoy srede na osnove monokulyarnogo komp'yuternogo zreniya / K. K. Gen // Avtomatizaciya. Sovremennye tehnologii. - 2015. - № 12. - S. 14-19.

21. Achtelik M. Onboard IMU and monocular vision based control for MAVs in unknown in- and outdoor environments / M. Achtelik, S. Weiss, R. Siegwart // Intl. Conf. on Robotics and Automation (ICRA). - 2011. - Pp. 3-7. - DOI: 10.1.1.456.2037.

22. Engel J. Semi-dense visual odometry for a monocular camera / J. Engel, J. Sturm, D. Cremers // Intl. Conf. on Computer Vision (ICCV 2013). - Pp. 1-5.

23. Kerl C. Dense visual SLAM for RGB-D cameras / C. Kerl, J. Sturm, D. Cremers // Intl. Conf. on Intelligent Robot Systems (IROS 2013). - Pp. 1-6. - DOI: 10.1.1.402.5544.

Login or Create
* Forgot password?