student
Russian Federation
Russian Federation
Russian Federation
Purpose: Mathematical model for studying the process of soil freezing given moisture migration is developed. Numerical modeling of temperature mode of railway subgrade at non-stationary pro-cess in cold climate conditions is performed. Methods: Numerical implementation of the model is performed by mathematical module processing in COMSOL Multiphysics program, which’s based on partial differential equations (PDE), with finite element method. The model reliability is con-firmed by the comparison with previous experimental data and the results of simulation by other authors. Results: Calculation results on the developed model basis show the best correlation with experimental data in comparison with the results for other models. Calculation example and calcu-lation results for subgrade temperature mode in freezing-thawing fifth cycle are presented. The analysis of soil freezing depth change and soil temperature fluctuation change by depth by fifth year are carried out. Practical significance: The developed mathematical model makes it possible to predict soil freezing depth, taking into account moisture migration, including freezing and thawing depth changes caused by climate warming. The developed model can be used both, to study the mechanism of subgrade temperature mode distribution at freezing and thawing, and to improve subgrade construction for to protect it from soil frost heaving.
Soil freezing, temperature mode, moisture migration, numerical modelling, railway subgrade
1. Lykov A. V. Teoriya teplo-i massoperenosa / A. V. Lykov, Yu. A. Mihaylov. - M.; Leningrad: Gosenergoizdat, 1963. - 535 s.
2. Ivanov N. S. Teplo- i massoperenos v merzlyh gornyh porodah / N. S. Ivanov. - M.: Nauka, 1969. - 240 s.
3. Pavlov A. R. Algoritm razdel'nogo opredeleniya vlazhnostnogo polya v taloy i merzloy zonah v zadache teplomassoperenosa / A. R. Pavlov, M. V. Matveeva // Matema-ticheskie zametki SVFU. - 2010. - № 17(1). - S. 83-92.
4. Pavlov A. R. Iteracionnaya raznostnaya shema dlya zadachi teplomassoperenosa s fazovymi perehodami v poristoy srede / A. R. Pavlov, I. G. Larionova, M. V. Mihay-lova // Matematicheskie zametki SVFU. - 2006. - № 13(2). - S. 68-78.
5. Pavlov A. R. Iteracionnaya raznostnaya shema dlya zadachi teplomassoperenosa pri promerzanii gruntov / A. R Pavlov, M. V. Matveeva // Vestnik Samarskogo gosu-darstvennogo universiteta. - 2007. - № 6. - S. 242-253.
6. Harlan R. L. Analysis of coupled heat-fluid transport in partially frozen soil / R. L. Harlan // Water Resources Research. - 1973. - № 9(5). - Pp. 1314-1323.
7. Sheppard M. I. Development and Testing of a Computer Model for Heat and Mass Flow in Freezing Soils / M. I. Sheppard, B. D. Kay, J. P. G. Loch // Proceedings of the third International Conference on Permafrost (July 10-13, 1978, Edmonton, Alberta, Canada). - Ottawa: National Research Council of Canada, 1978. - Pp. 76-81.
8. Jansson P-E. Model for Annual Water and Energy Flow in a Layered Soil / P-E. Jans-son, S. Halldin // Developments in Agricultural and Managed Forest Ecology. - 1979. - Iss. 9. - Pp. 145-163.
9. Taylor G. S. A model for coupled heat and moisture transfer during soil freezing / G. S. Taylor, J. N. Luthin // Canadian Geotechnical Journal. - 1978. - Iss. 15(4). - Pp. 548-555.
10. Jame Y.-W. Heat and mass transfer in a freezing unsaturated porous medium / Y.-W. Jame, D. I. Norum // Water Resources Research. - 1980. - Iss. 16(4). - Pp. 811-819.
11. Fukuda M. Numerical analysis of heat-moisture flow during soil freezing / M. Fuku-da, S. Nakagawa // Journal of the Japanese Society of Snow and Ice. - 1982. - Vol. 44. - Iss. 1. - Pp. 13-21.
12. Hu H. A numerical simulation for heat and moisture transfer during soil freezing / H. Hu, Sh. Yang, Zh. Lei // Journal of Hydraulic Engineering. - 1992. - Iss. 07. - Pp. 1-8.
13. Bai Q.-B. Equations and numerical simulation for coupled water and heat transfer in frozen soil / Q.-B. Bai, LI Xu, Y. Tian et al. // Chinese Journal of Geotechnical Engineering. - 2015. - Iss. 37(S2). - Pp. 131-136.
14. Richards L. A. Capillary Conduction of Liquids Through Porous Mediums / L. A. Richards // Physics. - 1931. - Iss. 1(5). - Pp. 318-333.
15. SP 25.13330.2020 «SNiP 2.02.04-88. Osnovaniya i fundamenty na vechno-merzlyh gruntah». - Utv. Prikazom Ministerstva stroitel'stva i zhilischno-kommunal'nogo hozyaystva RF ot 30 dekabrya 2020 g. № 915/pr. - M.: FAU «FCS», 2020. - 135 s.
16. Van Genuchten M. Th. A Closed-form Equation for Predicting the Hydraulic Con-ductivity of Unsaturated Soils / M. Th. van Genuchten // Soil Science Society of America Journal. - 1980. - Iss. 44(5). - Pp. 892-898.
17. Mualem Y. A new model for predicting the hydraulic conductivity of unsaturated porous media / Y. Mualem // Water Resources Research. - 1976. - Iss. 12 (3). - Pp. 513-522.
18. Egorov V. I. Primenenie EVM dlya resheniya zadach teploprovodnosti: ucheb-noe posobie / V. I. Egorov. - SPb.: SPb GU ITMO, 2006. - 77 s.
19. Kudryavcev S. A. Promerzanie i ottaivanie gruntov (prakticheskie primery i konechnoelementnye raschety) / S. A. Kudryavcev, I. I. Saharov, V. N. Paramonov. - SPb.: Georekonstrukciya, 2014. - 247 s.
20. Shang X.-Y. Numerical Simulation Improvement of Frozen Soil's Frost Heave with Hydraulics Model / X.-Y. Shang, Guo-qing Zhou, J.-S. Zhou // Journal of China University of Mining & Technology. - 2006. - Iss. 35(6). - Pp. 762-766.
21. Wang X. Optimization Study for Subgrade Structure of HSR in Deep Seasonally Frozen Region Based on Temperature Field: Master's Thesis / X. Wang. - Beijing: Beijing Jiaotong University, 2019. - 101 p.