Russian Federation
Russian Federation
Purpose: To consider the current situation in container transportation market of Leningrad Region. To show the need in the design of new forecasting models. To justify the use of neural fuzzy networks. To consider existing limitations of their application. To suggest the ways to build predictive neural fuzzy models for evaluating promising quantitative indicators of logistics activities. Methods: ANFIS, R-ANFIS, Fuzzy-Partitions, SCRG, GD, LSE, PSO, ABC, FA. Results: The necessity of adaptation of neural fuzzy networks for making forecasts in the field of logistics is pointed on, the structure of a promising model is proposed which takes into account the use and analysis of variety of methods on structural and parametric identification. The shortcomings of particular methods of structural and parametric identification, which affect the accuracy of being obtained forecasts, are indicated. Practical importance: The importance of design of accurate predictive models for key quantitative indicators of logistics activities is shown. The factors influencing the implementation of transport and logistics activities are given which of, reliable forecast is impossible in the situation of limited time and resources. For consideration, the article proposes the existing methods of parametric and structural identification of fuzzy neural networks. An algorithm for adapting existing methods to the use in a transport and logistics process is proposed.
Fuzzy neural networks, hybrid neural networks, parametric and structural identification methods, learning methods, container terminal, logistics, forecasting
1. Transportnaya strategiya Rossiyskoy Federacii na period do 2030 goda. Ministerstvo transporta Rossiyskoy Federacii. - 2008.
2. Direkciya po razvitiyu transportnoy sistemy Sankt-Peterburga i Leningradskoy oblasti. Strategiya razvitiya transportnoy sistemy Sankt-Peterburga i Leningradskoy oblasti na period do 2030 goda. - 2016.
3. Pokrovskaya O. Northern Latitudinal Railway Project: Priorities and Drivers / O. Pokrovskaya, R. Fedorenko, A. Kamaletdinov. - 2021. - DOI:https://doi.org/10.1007/978-3-030-60929-0_34.
4. Anisimov V. Multimodal Transport Network of the Far Eastern Federal District of Russia / V. Anisimov, L. Bogdanova, O. Morozova, S. Shkurnikov, N. Nesterova. - 2021. - DOI:https://doi.org/10.1007/978-981-33-6208-6_45.
5. Panova Yu. Russian Railways on the Eurasian Market: Issue of Sustainability / Yu. Panova, E. Korovyakovskiy, A. Semerkin et al. // European Business Review. - 2017. -https://doi.org/10.1108/EBR-01-2016-0008.
6. Goncharova N. Intelligent Transport Systems as a Way to Improve the Quality of the Rail-Truck Multimodal Freight Transportation / N. Goncharova // IEEE East-West Design & Test Symposium (EWDTS). - 2019. - Pp. 1-7. - DOI:https://doi.org/10.1109/EWDTS.2019.8884460.
7. Jang J.-S. R. ANFIS: adaptive-network-based fuzzy inference system / J.-S. R. Jang // IEEE Transactions on Systems, Man, and Cybernetics. - Vol. 23. - № 3. - Pp. 665-685. - May-June 1993. - doi:https://doi.org/10.1109/21.256541.
8. Zhang J. Recurrent neuro-fuzzy networks for nonlinear process modeling / J. Zhang, A. J. Morris // IEEE Transactions on Neural Networks. - Vol. 10. - № 2. - Pp. 313-326. - March 1999. - doi:https://doi.org/10.1109/72.750562.
9. Yinghua L. Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network / L. Yinghua, G. A. Cunningham III, S. Coggeshall // IEEE Transactions on Fuzzy Systems. - 1997. - № 5. - Pp. 614-621. - DOI:https://doi.org/10.1109/91.649913.
10. Castellano G. A neuro-fuzzy network to generate human-understandable knowledge from data / G. Castellano, A. Fanelli, C. Mencar // Cognitive Systems Research Journal. - 2002. - № 3. - Pp. 125-144. - DOI:https://doi.org/10.1016/S1389-0417(01)00055-9.
11. Lee Shie-Jue. A neuro-fuzzy system modeling with self-constructing rule generationand hybrid SVD-based learning / Shie-Jue Lee, Chen-Sen Ouyang // Fuzzy Systems, IEEE Transactions on. - 2003. № 11. - Pp. 341-353. - DOI:https://doi.org/10.1109/TFUZZ.2003.812693.
12. Jiang H. Modeling customer satisfaction for new product development using a PSO-based ANFIS approach / H. Jiang, C. K. Kwong, W. H. Ip, T. C. Wong // Appl. Soft Comput. 2012. - № 12. - Pp. 726-734. - DOI:https://doi.org/10.1016/j.asoc.2011.10.020.
13. Catalão J. Hybrid Wavelet-PSO-ANFIS approach for short-term electricity prices forecasting / J. Catalão, H. M. I. Pousinho, V. M. F. Mendes // Power Systems, IEEE Transactions on. - 2011. - № 26. - Pp. 137-144. - DOI:https://doi.org/10.1109/TPWRS.2010.2049385.
14. Turki M. Adaptive Control of Nonlinear System Using Neuro-Fuzzy Learning by PSO Algorithm / M. Turki, S. Bouzaida, A. Sakly, M'Sahli Faouzi. - 2012.
15. Pousinho H. M. I. A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal / H. M. I. Pousinho, V. M. F. Mendes, J. P. S. Catalão // Energy Conversion and Management. - 2011- Vol. 52. - Iss. 1. - Pp. 397-402. - ISSN 0196-8904.
16. Peilin L. Training ANFIS Model with an Improved Quantum-Behaved Particle Swarm Optimization Algorithm / L. Peilin, L. Wenhao, W. Fang // Mathematical Problems in Engineering. - 2013. - DOI:https://doi.org/10.1155/2013/595639.
17. Bagheri A. Financial forecasting using ANFIS networks with Quantum-behaved Particle Swarm Optimization / A. Bagheri, H. Peyhani, M. Akbari // Expert Systems with Applications. - № 41. - Pp. 6235-6250. - DOI:https://doi.org/10.1016/j.eswa.2014.04.003.
18. Soto J. Optimization of the Fuzzy Integrators in Ensembles of ANFIS Model for Time Series Prediction: The case of Mackey-Glass / J. Soto, P. Melin. - 2015. - DOI:https://doi.org/10.2991/ifsa-eusflat-15.2015.140.
19. Malleswaran M. Genetically optimized ANFIS based Intelligent Navigation System / M. Malleswaran, V. Vaidehi and R. A. Joseph // Third International Conference on Advanced Computing. - 2011. - Pp. 390-395. - DOI:https://doi.org/10.1109/ICoAC.2011.6165207.
20. Cárdenas J. J. Evolutive ANFIS training for energy load profile forecast for an IEMS in an automated factory / J. J. Cárdenas, A. García, J. L. Romeral, K. Kampouropoulos // ETFA 2011. - 2011. - Pp. 1-8. - DOI:https://doi.org/10.1109/ETFA.2011.6059079.
21. Zhou Y. Explore an evolutionary recurrent ANFIS for modelling multi-step-ahead flood forecasts / Y. Zhou, S. Guo, F. Chang // Journal of Hydrology. - 2019.
22. Wei C. k-NN Based Neuro-fuzzy System for Time Series Prediction / C. Wei, T. Chen, S. Lee // 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. - 2013. - Pp. 569-574. - DOI:https://doi.org/10.1109/SNPD.2013.68.
23. Karaboga D. Training ANFIS using artificial bee colony algorithm / D. Karaboga, E. Kaya // IEEE International Symposium on Innovations in Intelligent Systems and Applications, IEEE INISTA. - 2013. № 1-5. - DOI:https://doi.org/10.1109/INISTA.2013.6577625.
24. Wang R. Assessment of human operator functional state using a novel differential evolution optimization based adaptive fuzzy model / R. Wang, J. Zhang, Y. Zhang, X. Wang // Biomedical Signal Processing and Control. - 2012. - Vol. 7. - Iss. 5. - Pp. 490-498.
25. Orouskhani M. A hybrid method of modified cat swarm optimization and gradient descent algorithm for training anfis / M. Orouskhani, M.Manthouri, Y. Orouskhani, M. Teshnehlab // International Journal of Computational Intelligence and Applications. - 2013. - DOI: 12.https://doi.org/10.1142/S1469026813500077.
26. Badetsky A. Improving the Stability of the Train Formation Plan to Uneven Operational Work / A. Badetsky, O. Medved // Transportation Research Procedia. - 2021. - № 54. - Pp. 559-567. - DOI:https://doi.org/10.1016/j.trpro.2021.02.108.
27. Dolgopolov P. Optimization of train routes based on neuro-fuzzy modeling and genetic algorithms / P. Dolgopolov, D. Konstantinov, L. Rybalchenko, R. Muhitovs // Procedia Comput Sci. - 2019. - № 149. - Pp. 11-18. - DOI:https://doi.org/10.1016/j.procs.2019.01.101
28. Yang L. Railway freight transportation planning with mixed uncertainty of randomness and fuzziness / L. Yang, Z. Gao, K. Li // Appl. Soft Comput. J. - 2011. - № 11.1. - Pp. 778-792. - DOI:https://doi.org/10.1016/j.asoc.2009.12.039.