Russian Federation
Russian Federation
Russian Federation
UDC 624.139
Under specific conditions, the degradation of the permafrost soils in railway formation foundations is not only characterized by thermal subsidence, but also by the development of weak soils that consolidate over time, potentially leading to slope instability and embankment creep. In such scenarios, a combined thermal stabilization approach can be applied, which includes the injection of soil- cement solutions alongside the installation of vapour-liquid cooling systems (SCD). This research establishes the correlation between the thermal conductivity coefficients of hardened injection solutions and the binder content. It also conducts a numerical model of the thermal stabilization of a soil mass to assess the effectiveness of the combined method, measured by the heat transfer coefficient, in comparison with the application of vapour-liquid systems alone. Methods: A laboratory experiment was set up and carried out to determine the thermal conductivity coefficient of solutions using the steady-state thermal regime method. Heat engineering calculations were performed using a specialized software package. Results: The dependences of the thermal conductivity coefficients of hardened soil-cement injection mortars on the binder content have been determined under various conditions, such as air- dry state, full water saturation, and frozen-thawed states. It has been established that the thermal conductivity of the hardened mortar is significantly greater than that of the original soil in equivalent conditions, with a notable relative impact observed even at minimal binder content. Practical significance: The established relationships are recommended for addressing practical challenges associated with injecting soil-cement mortars into the foundations of transportation structures in areas where permafrost soils are prevalent. Numerical modelling has demonstrated that the combined method proposed for thermal stabilization of the soil mass is more effective in terms of heat exchange coefficient than relying solely on vapour-liquid soil-cement mixtures, highlighting the importance of this consideration in design and calculations.
Under specific conditions, the degradation of the permafrost soils in railway formation foundations is not only characterized by thermal subsidence, but also by the development of weak soils that consolidate over time, potentially leading to slope instability and embankment creep. In such scenarios, a combined thermal stabilization approach can be applied, which includes the injection of soil- cement solutions alongside the installation of vapour-liquid cooling systems (SCD). This research establishes the correlation between the thermal conductivity coefficients of hardened injection solutions and the binder content. It also conducts a numerical model of the thermal stabilization of a soil mass to assess the effectiveness of the combined method, measured by the heat transfer coefficient, in comparison with the application of vapour-liquid systems alone. Methods: A laboratory experiment was set up and carried out to determine the thermal conductivity coefficient of solutions using the steady-state thermal regime method. Heat engineering calculations were performed using a specialized software package. Results: The dependences of the thermal conductivity coefficients of hardened soil-cement injection mortars on the binder content have been determined under various conditions, such as air- dry state, full water saturation, and frozen-thawed states. It has been established that the thermal conductivity of the hardened mortar is significantly greater than that of the original soil in equivalent conditions, with a notable relative impact observed even at minimal binder content. Practical significance: The established relationships are recommended for addressing practical challenges associated with injecting soil-cement mortars into the foundations of transportation structures in areas where permafrost soils are prevalent. Numerical modelling has demonstrated that the combined method proposed for thermal stabilization of the soil mass is more effective in terms of heat exchange coefficient than relying solely on vapour-liquid soil-cement mixtures, highlighting the importance of this consideration in design and calculations.
1. Sakharov I. Ensuring the operational suitability of buildings, railways and bridges in the Arctic zone in condi tions of global warming / I. Sakharov, S. Kudryavtsev, V. Paramonov et al. // X International Scientific Siberian Transport Forum — TransSiberia 2022 (Novosibirsk, 02–05 March 2022). — Novosibirsk: B. V. Elsevier, 2022. — Pp. 2506–2514. — DOI:https://doi.org/10.1016/j.trpro.2022.06.288.
2. Eliseev D. O. Transportnaya infrastruktura arkticheskih regionov Rossii v usloviyah degradacii vechnoy merzloty / D. O. Eliseev, Yu. V. Naumova // Ekonomika i biznes: teoriya i praktika. — 2019. — № 10-1(56). — S. 113–118. — DOI:https://doi.org/10.24411/2411-0450-2019-11226.
3. Lanis A. L. Obosnovanie sistemy inzhenerno-geokriologicheskogo monitoringa ekspluatiruemyh nasypey lineynyh transportnyh sooruzheniy v usloviyah Yamalo-Neneckogo avtonomnogo okruga / A. L. Lanis, D. A. Razuvaev, D. A. Usov, R. S. Pechenkin // Vestnik Sibirskogo gosudarstvennogo universiteta putey soobscheniya. — 2025. — № 1(73). — S. 68–76. — DOI: https://doi.org/10.52170/1815-9265_2025_73_68.
4. Cernant A. A. Innovacionnye tehnologii upravleniya temperaturoy gruntovyh massivov transportnyh sooruzheniy v arkticheskih shirotah / A. A. Cernant // Stroitel'nye materialy, oborudovanie, tehnologii XXI veka. — 2013. — № 3(170). — S. 26–31.
5. Dydyshko P. I. Deformacii zemlyanogo polotna zheleznodorozhnogo puti i ih ustranenie v usloviyah vechnoy merzloty / P. I. Dydyshko // Kriosfera Zemli. — 2017. — T. 21. — № 4. — S. 43–57.
6. Gallavresi F. Ground freezing — the application of the mixed method (brine-liquid nitrogen) / F. Gallavresi // Engineering Geology. — 1981. — Vol. 18. — Iss. 1. — Pp. 361–375. — DOI:https://doi.org/10.1016/0013-7952(81)90074-0.
7. Razuvaev D. A. Stabilizaciya osnovaniya zemlyanogo polotna in'ekcionnym sposobom pri degradacii mnogo- letnemerzlyh gruntov / D. A. Razuvaev, R. S. Pechenkin // Mir transporta. — 2024. — T. 22. — № 1 (110). — S. 6–16. — DOI:https://doi.org/10.30932/1992-3252-2024-22-1-1.
8. Lomov P. O. Stabilizing subgrades of transport struc- tures by injecting solidifying solutions in cold regions / P. O. Lomov, A. L. Lanis, D. A. Razuvaev, M. G. Kavardakov // Sciences in Cold and Arid Regions. — 2021. — Vol. 13. — Iss. 5. — Pp. 357–365. — DOI: 10.3724/ SP.J.1226.2021.21040.
9. Ibragimov M. N. Zakreplenie gruntov in'ekciey cementnyh rastvorov: monografiya / M. N. Ibragimov, V. V. Semkin. — M.: ASV, 2012. — 256 s.
10. Babaskin Yu. G. Ukreplenie gruntov in'ektirovaniem pri remonte avtomobil'nyh dorog / Yu. G. Babaskin. — Minsk: Belorusskiy nacional'nyy tehnicheskiy universitet, 2002. — 177 s.
11. Lanis A. L. Metod napornoy in'ekcii dlya usileniya nasypey / A. L. Lanis // Put' i putevoe hozyaystvo. — 2009. — № 2. — S. 32–34.
12. Ashpiz E. S. Opyt sooruzheniya zemlyanogo polotna zheleznyh dorog, raspolozhennyh na mnogoletnemerzlyh gruntah: problemy i puti ih resheniya / E. S. Ashpiz // Byulleten' Ob'edinennogo uchenogo soveta OAO RZhD. — 2019. — № 1. — S. 21–27.
13. Liu H. Monitoring roadbed stability in permafrost area of Qinghai-Tibet Railway by MT-InSAR technology / H. Liu, S. Huang, C. Xie, B. Tian et al. // Land. — 2023. — Vol. 12. — P. 474. — DOI:https://doi.org/10.3390/land12020474.
14. Koloskov G. V. K voprosu vybora optimal'nyh sistem termostabilizacii gruntov pri stroitel'stve v kriolitozone / G. V. Koloskov, E. V. Ibragimov, R. G. Gamzaev // Geotehnika. — 2015. — № 6. — S. 4 11.
15. Razuvaev D. A. Optimizaciya sostavov in'ekcionnyh rastvorov dlya stabilizacii slabogo osnovaniya ekspluatiruemogo zemlyanogo polotna v kriolitozone / D. A. Razuvaev, R. S. Pechenkin, A. L. Lanis // Vestnik Rostovskogo gosudarstvennogo universiteta putey soobscheniya. — 2025. — № 1(97). — S. 8–16. — DOI: https://doi.org/10.46973/0201-727X_2025_1_8.



