FEASIBILITY AND PROSPECTS OF APPLYING ELECTROLYTIC PROTECTION AGAINST CORROSION OF REINFORCED CONCRETE BRIDGE SUPPORTS
Abstract and keywords
Abstract (English):
To analyze the engineering aspects, assess the effectiveness, and evaluate economic feasibility of implementing electrolytic protection (ELP) to mitigate corrosion, thereby prolong the service life and enhance the reliability of reinforced concrete bridge support structures subjected to chloride aggression. Methods: The research relies on a comprehensive review of scientific literature from databases such as Scopus, Web of Science, and RSCI, alongside with an analysis of regulatory and technical documents including ISO standards and national codes of practice, as well as results from field surveys. Mathematical modelling was utilized to determine the relationship between the corrosion rate, chloride concentration, and protective current density. Life Cycle Cost Analysis (LCCA) was conducted using specialized software to compare maintenance strategies. Field measurements of chloride ion content and stray current characteristics were performed. Results: The research illustrates an exponential increase in the corrosion rate at chloride concentrations above 0.4%, escalating from 2.43 to 177.01 μm/year. A corrosion reduction of up to 99% has been achieved at the current density of 10–15 mA/m². ELP systems, which use an external current source, can prolong the service life of supports by a factor of 45, with an initial investment of approximately 450 USD/m². The Net Present Value (NPV) of costs decreases to USD 355 thousand, in contrast to USD 510 thousand allocated for conventional repairs. The optimal range for cathodic current density necessary for effective corrosion suppression has been determined to be between 5–15 mA/m². Practical significance: The potential for integrating ELP into an infrastructure lifecycle management strategy has been demonstrated. This technology not only offers significant cost savings (1.5–2.5 times less than traditional methods) but also enhances bridge operational safety and facilitates a more efficient allocation of resources for the maintenance of transportation networks.

Keywords:
Electrolytic protection (ELP), reinforcement corrosion, reinforced concrete supports, chloride aggression, cathodic polarization
Text
Text (PDF): Read Download
References

1. Surnin D. A. Ispol'zovanie cinka dlya antikorrozionnoy zaschity mostov / D. A. Surnin // Tehnicheskoe regulirovanie v transportnom stroitel'stve. — 2022. — № 2 (53). — S. 60–66.

2. Matyunin D. Yu. Primenenie protektornyh splavov dlya zaschity ot korrozii morskih ob'ektov / D. Yu. Matyunin, S. A. Kaz'min, A. B. Bosov, A. V. Lobanov // Gidrotehnika. — 2024. — № 1(74). — S. 2–9.

3. Burkov A. K. Kompleksnye resheniya elektrohimicheskoy zaschity ot korrozii — oborudovanie i aspekty proektirovaniya / A. K. Burkov, I. I. Popov // Gidrotehnika. — 2025. — № 2. — S. 69–71.

4. Şirinova A. Y. Metal konstruksiyaların korroziyadan mühafizəsində elektokimyəvi katod mühafizə qurğuları / A. Y. Şirinova // Elmi xəbərlər. Təbiət və Texniki Elmlər Bölməsi. — 2024. — Vol. 24. — Iss. 3. — Pp. 89–94.

5. Kaverinskiy V. S. Novye metody zaschity ot korrozii / V. S. Kaverinskiy, D. V. Kaverinskiy // Lakokrasochnye materialy i ih primenenie. — 2020. — № 5. — S. 10–14.

6. Anufriev N. G. Issledovanie korrozionnogo povedeniya alyuminiya 1980T1 v morskoy vode i burovom rastvore elektrohimicheskimi metodami / N. G. Anufriev, Yu. A. Kuzenkov // Praktika protivokorrozionnoy zaschity. — 2022. — T. 27. — № 3. — S. 7–30.

7. Zavarzin S. V. Vysokotemperaturnaya solevaya korroziya i zaschita materialov gazoturbinnyh dvigateley (obzor) / S. V. Zavarzin, M. S. Oglodkov, D. V. Chesnokov, I. A. Kozlov // Trudy VIAM. — 2022. — № 3(109). — S. 121–134.

8. Garashko V. V. Antikorrozionnaya zaschita shpuntovyh ograzhdeniy: tehnologii, materialy i perspektvy / V. V. Garashko // Molodoy issledovatel' Dona. — 2025. — T. 10. — № 3(54). — S. 17–21.

9. Buziner Yu. L. Antikorrozionnoe pokrytie Ecomast dlya zaschity GTS v razlichnyh usloviyah ekspluatacii / Yu. L. Buziner, N. N. Shmakov // Gidrotehnika. — 2024. — № 4(77). — S. 74–75.

10. Miheeva O. V. Principy antikorrozionnoy zaschity truboprovodov / O. V. Miheeva, E. N. Mirkina, V. S. Mavzovin // Ekonomika stroitel'stva. — 2025. — № 1. — S. 356–359.

11. Reva Yu. V. Elektrohimicheskaya protektornaya zaschita aktivnyh chastey elektricheskih mashin otkrytogo ispolneniya dlya sudov ledovogo klassa / Yu. V. Reva // Problemy upravleniya riskami v tehnosfere. — 2022. — № 4(64). — S. 104–110.

12. Zaharova P. I. Novyy perspektivnyy korrozionnostoykiy material s povyshennym resursom raboty dlya preduprezhdeniya situaciy tehnogennogo haraktera / P. I. Zaharova, A. V. Horin // Molodezh' i nauka. — 2023. — № 9.

13. Pichugova L. N. Zaschita ot korrozii na AES / L. N. Pichugova // Energeticheskie ustanovki i tehnologii. — 2023. — T. 9. — № 4. — S. 74–83.

14. Bocharov V. A. Cinkirovanie — vysokoeffektivnaya zaschita ot korrozii / V. A. Bocharov // Gidrotehnika. — 2024. — № 1(74). — S. 62–64.

15. Revin P. O. Issledovanie dolgovechnosti antikorrozionnyh pokrytiy dlya zaschity prichal'nyh sooruzheniy / P. O. Revin, A. V. Makarenko // Nauka i tehnologii truboprovodnogo transporta nefti i nefteproduktov. — 2022. — T. 12. — № 5. — S. 470– 479.

16. Ovchinnikova T. A. Korroziya i antikorrozionnaya zaschita zhelezobetonnyh mostovyh konstrukciy / T. A. Ovchinnikova, A. N. Marinin, I. G. Ovchinnikov // Internet-zhurnal «Naukovedenie». — 2014. — № 5(24). — № 06KO514.

17. Migunov V. N. Eksperimental'no-teoreticheskoe modelirovanie armirovannyh konstrukciy v usloviyah korrozii: monografiya / V. N. Migunov, I. I. Ovchinnikov, I. G. Ovchinnikov. — Penza: PGUAS, 2014. — 294 s.

18. Stepanova V. F. Katodnaya elektrohimicheskaya zaschita armatury ot korrozii v zhelezobetonnyh konstrukciyah / V. F. Stepanova, N. K. Rozental', N. A. Moiseeva // Promyshlennoe i grazhdanskoe stroitel'stvo. — 2023. — № 12. — S. 46–50.

19. Dang V. Q. Effects of chloride ions on the durability and mechanical properties of sea sand concrete incorporating supplementary cementitious materials under an accelerated carbonation condition / V. Q. Dang, Y. Ogawa, P. T. Bui, K. Kawai // Construct. Build. Mater. — 2021. — Vol. 274. — P. 122016. — DOI:https://doi.org/10.1016/j.conbuildmat.2020.122016.

20. Shalyy E. E. Dolgovechnost' morskih sooruzheniy pri kombinirovannoy korrozii zhelezobetona / E. E. Shalyy, S. N. Leonovich, L. V. Kim // Vestnik Povolzhskogo gosudarstvennogo tehnologicheskogo universiteta. Ser.: Materialy. Konstrukcii. Tehnologii. — 2018. — № 1(5). — S. 65–72.

21. Leonovich S. N. Dolgovechnost' betona pri hloridnoy agressii: monografiya / S. N. Leonovich, A. V. Stepanova, V. G. Cuprik, L. V. Kim i dr.; Inzhenernaya shkola DVFU. — Vladivostok: Dal'nevost. federal. un-t, 2020. — 90 s.

22. Karpenko N. I. O sovremennyh metodah obespe- cheniya dolgovechnosti zhelezobetonnyh konstrukciy / N. I. Karpenko, V. N. Yarmakovskiy, V. T. Erofeev Academia. Arhitektura i stroitel'stvo. — 2015. — № 1. — S. 93–102.

23. Prognozirovanie dolgovechnosti zhelezobetonnyh konstrukciy pri kombinirovannom vozdeystvii karbonizacii i hloridnoy agressii i ih vosstanovlenie / S. N. Leonovich i dr.; pod obsch. red. S. N. Leonovicha. — Minsk: BNTU, 2021. — 353 s.

24. Leonovich S. N. Reinforced Concrete under the Action of Carbonization and Chloride Aggression: a Probabilistic Model for Service Life Prediction / S. N. Leo- novich, E. E. Shalyi, L. V. Kim // Science and Technique. — 2019. — Vol. 18. — Iss. 4. — Pp. 284–291.

25. Shalyy E. E. Sovmestnoe deystvie karbonizacii i hloridnoy agressii na konstrukcionnyy beton: veroyatnostnaya model' / E. E. Shalyy i dr. // Vestnik grazhdanskih inzhenerov. — 2018. — T. 68. — № 3. — S. 123–131.

26. Duan Y. Corrosion prevention of steel bars in concrete using amine and epoxy compounds / Y. Duan, J. Y. Wang, L. Wang // Construction and Building Materials. — 2018. — Vol. 170. — Pp. 692–700.

27. Liu Y. Corrosion inhibition of reinforcing steel in concrete by plant exudates / Y. Liu, Y. Wang, W. Li // Materials and Corrosion. — 2022. — Vol. 73. — Iss. 6. — Pp. 1536–1544.

28. Li Y. Corrosion inhibition of Graphene oxide for steel in concrete / Y. Li, X. Zou, F. Zhao, L. Ma // Corrosion Science. — 2019. — Vol. 153. — Pp. 240–249.

29. Afrasiyabi M. Corrosion of steel in concrete: A review / M. Afrasiyabi, A. A. Ramezanianpour, M. Ghanbari // Construction and Building Materials. — 2017. — Vol. 141. — Pp. 835–851. — DOI:https://doi.org/10.1016/j.conbuildmat.2017.02.186.

30. Daniyal M. Corrosion assessment and control techniques for reinforced concrete structures: a review / M. Daniyal, S. Akhtar // Journal of Building Pathology and Rehabilitation. — 2020. — Vol. 5. — P. 1. — DOI: 10.1007/ s41024-019-0067-3.

31. Geiker M. R. Experimental support for new electro active repair method for reinforced concrete / M. R. Geiker, R. B. Polder // Material Corrosion. — 2016. — Vol. 67. — Pp. 600–606.

32. Belyy A. A. Monitoring inzhenernyh konstrukciy puteprovoda po ulice Babura k Tashkentskomu mezhdunarodnomu aeroportu imeni Islama Karimova / A. A. Belyy, U. Z. Shermuhamedov, M. M. Sobirova, Sh. Sh. Kadirova i dr. // Putevoy Navigator. — 2025. — № 64(90). — S. 46–55.

Login or Create
* Forgot password?