DETERMINING TEMPERATURE FIELDS OF VARIOUS CARGO TRANSPORTED IN AUTONOMOUS REFRIGERATED CONTAINERS USING LIQUEFIED NATURAL GAS (LNG) COOLING
Abstract and keywords
Abstract (English):
To develop a methodology for assessing cargo thermal condition by determining the temperature fields of various temperature-regulated goods during their transportation in autonomous refrigerated containers using liquefied natural gas (LNG). To validate the model experimentally. To determine a method for calculating the required LNG consumption for establishing thermal equilibrium in the container. Methods: The determination of the cargo temperature fields was reduced to solving a heat conduction problem in a two-dimensional domain with third-kind boundary conditions and to obtaining the corresponding temperature fields. The method for calculating the LNG consumption to maintain thermal equilibrium was developed based on the heat balance method. Results: A mathematical model describing the heat exchange in cargo during transportation in an autonomous refrigerated container using LNG cooling has been developed and experimentally validated. A method for calculating LNG consumption to compensate for excessive heat gains has been formulated. The calculations and resulting temperature fields have been presented for a transportation scenario involving fruits and vegetables. Practical significance: The findings of this study can be used to optimize refrigerated transport conditions and to develop new container cooling systems using LNG as an auxiliary cooling source.

Keywords:
Autonomous refrigerated containers, cooling, refrigerated transportation, liquefied natural gas, temperature fields
Text
Text (PDF): Read Download
References

1. Perevozki konteynerov po seti RZhD po itogam 2024 goda vyrosli na 5,9 % do 7,9 mln TEU // InfraNews. — URL: https://www.infranews.ru/logistika/containeri/66616- perevozki-kontejnerov-po-seti-rzhd-po-itogam-2024-goda- vyrosli-na-5-9-do-7-9-mln-teu/ (data obrascheniya: 22.06.2025).

2. Perevozki konteynerov po seti RZhD v 2025 godu mogut dostich' 8 mln TEU — IERT // Sayt OAO «OAO» RZhD. — URL: https://company.rzd.ru/ru/9401/ page/78314?id=222971 (data obrascheniya: 22.06.2025).

3. Terterov M. N. Zheleznodorozhnyy hladotransport / M. N. Terterov, N. E. Lysenko, V. N. Panferova. — M.: Transport, 1987. — 255 s.

4. Transportnaya strategiya RF na period do 2030 goda s prognozom na period do 2035 goda. — URL: https:// rosavtodor.gov.ru/docs/transportnaya-strategiya-rf-na- period-do-2030-goda-s-prognozom-na-period-do-2035-goda (data obrascheniya: 22.06.2025).

5. Koncepciya kompleksnogo razvitiya konteynernogo biznesa v holdinge «RZhD». — URL: https://docs.cntd. ru/document/902325994 (data obrascheniya: 22.06.2025).

6. Kiselev I. G. O celesoobraznosti ispol'zovaniya szhizhennogo prirodnogo gaza na refrizheratornyh konteynerah s navesnymi dizel'-generatorami / I. G. Kiselev, S. B. Komissarov, D. Ya. Monastyrskiy // Byulleten' rezul'tatov nauchnyh issledovaniy. — 2021. — № 4. — S. 104–113. — DOI:https://doi.org/10.20295/2223-9987- 2021-4-104-113.

7. Voron O. A. Ispol'zovanie szhizhennogo prirodnogo gaza v kombinirovannoy energosilovoy ustanovke avtonomnogo refrizheratornogo vagona / O. A. Voron // Vestnik Nauchno-issledovatel'skogo instituta zhelezno- dorozhnogo transporta (VESTNIK VNIIZhT). — 2019. — № 3(78). — S. 188–192. — DOI:https://doi.org/10.21780/2223- 9731-2019-78-3-188-192.

8. American Society of Heating, Refrigerating and Air- Conditioning Engineers, Inc. Chapter 19 Thermal Properties of Foods, ASHRAE Handbook 2022.

9. Defraeye T. Exploring ambient loading of citrus fruit into reefer containers for cooling during marine transport using computational fluid dynamics / T. Defraeye, P. Cronjé, P. Verboven, U. L. Opara et al. // Postharvest Biology and Technology. — 2015. — Iss. 108. — Pp. 91–101. — DOI:https://doi.org/10.1016/j.postharvbio.2015.06.004.

10. Efimov V. V. Teplotehnicheskiy raschet refrizheratornyh transportnyh moduley: metod. ukazaniya / V. V. Efimov. — SPb.: PGUPS, 2003. — 64 s.

11. Tagliavini G. Multiphysics modeling of convectivecooling of non-spherical, multi-material fruit to unveil its quality evolution throughout the cold chain / G. Tagliavini, T. Defraeye, J. Carmeliet // Food and Bioproducts Processing. — 2019. — Iss. 117. — Pp. 310–320. — DOI:https://doi.org/10.1016/j.fbp.2019.07.013.

12. Chen Y.-M. Sensitivity analysis of heat and mass transfer characteristics during forced-air cooling process of peaches on different air-inflow velocities / Y.-M. Chen, H.-Y. Song, Z.-S. Chen, R. Zhao et al. // Food Science & Nutrition. — 2020. — Vol. 8. — Iss. 12. — Pp. 6592– 6602. — DOI:https://doi.org/10.1002/fsn3.1951.

Login or Create
* Forgot password?