Russian Federation
Russian Federation
Objective: consider the development of modern concepts of IoT and Smart grid from the point of view of effective implementation on existing production facilities, in particular, on the metro power supply network. Show the need to develop a scientific and methodological apparatus for the formation of intelligent monitoring and control subsystems, taking into account the introduction of new developments into existing complexes. Determine the features of the metro power supply network and its monitoring and subsystems, indicating development paths taking into account existing new technologies. Develop a methodology for forming a subsystem for monitoring and managing the metro power supply network. Methods: analysis of structures for constructing intelligent monitoring and control subsystems according to modern concepts; analysis of existing monitoring and control subsystems of the metro power supply network. When developing the methodology, semi-Markov models are used to simulate the functioning and recovery processes, and an empirical mode decomposition method is proposed for processing monitoring data. Results: a methodology has been developed for forming a subsystem for monitoring and controlling the metro power supply network. A model and analytical apparatus is proposed for modeling the processes of functioning and recovery and for carrying out work with diagnostic data. A list of method parameters has been generated. Practical importance: the proposed methodology for forming a subsystem for monitoring and controlling the power supply network makes it possible to substantiate the necessary composition, structure and requirements for diagnostic and control tools. This methodology can be applied in the development of new multi-parameter metro complexes, in the formation of justifications for modernization and sections of technical specifications and requirements.
metro power supply network, intelligent monitoring systems IoT and Smart grid, methodology for forming a monitoring and control subsystem, semi-Markov model, data processing, introduction of new technologies
1. Kobec B. B., Volkova I. O. Innovacionnoe razvitie elektroenergetiki na baze koncepcii Smart Grid. M.: IAC Energiya, 2010. 208 s.
2. Rekomendacii MSE-T Y.2060 «Obzor Interneta veschey», 2012. 22 s.
3. Shakaryan Yu. G., Fortov V. E., Bushuev V. V. i dr. Koncepciya intellektual'noy elektroenergeticheskoy sistemy s aktivno-adaptivnoy set'yu. M., 2012. 238 s.
4. Emmanuel M., Seah W. K. G., Rayudu R. Communication Architecture for Smart Grid Applications. IEEE Symposium on Computers and Communications (ISCC). 2018. P. 00746–00751. DOI:https://doi.org/10.1109/ISCC.2018.8538472.
5. Titova T. S., Evstaf'ev A. M. Innovacionnye sistemy upravleniya elektricheskogo podvizhnogo sostava // Zheleznodorozhnyy transport: Ezhemesyachnyy nauchno-teoreticheskiy tehniko-ekonomicheskiy zhurnal. 2017. № 11. S. 54–59. ISSN 0044-4448.
6. Papulovskaya N. V. Osnovy interneta veschey: uchebno-metodicheskoe posobie. M-vo nauki i vysshego obrazovaniya RF. Ekaterinburg: Izd-vo Ural. un-ta, 2022. 104 s.
7. Li P. Arhitektura interneta veschey / per. s ang. M. A. Raytmana. M.: DMK Press, 2019. 454 s.
8. Antti S. Internet veschey: video, audio, kommutaciya. M.: DMK Press, 2019. 120 s.
9. Munister V. D. IoT. Mezhmashinnoe vzaimodeystvie. Programmirovanie v komp'yuternyh setyah. Izdatel'stvo: SI Uchebno-teoreticheskoe izdanie, 2020. 375 s.
10. ISO/IEC 30162. Internet of Things (IoT) — Compatibility requirements and model for devices within industrial IoT systems. 2022. P. 6.
11. PUE: 7-e izdanie.
12. GOST 32895-2014 Elektrifikaciya i elektrosnabzhenie zheleznyh dorog. Terminy i opredeleniya.
13. GOST R 54130-2010. Kachestvo elektricheskoy energii. Terminy i opredeleniya.
14. Bykov E. I. Elektrosnabzhenie metropolitenov. Ustroystvo, ekspluataciya i proektirovanie. M.: Transport, 1977. 431 s.
15. Davydova A. V., Kanaev A. K. Primenenie obobschennoy grafoanaliticheskoy modeli v postroenii polumarkovskoy modeli podsistemy monitoringa i upravleniya sistemy elektrosnabzheniya metropolitena // Izv. SPbGETU «LETI». 2022. T. 16, № 4. S. 78–88. DOI:https://doi.org/10.32603/2071-8985-2023-16-4-78-88.
16. Kanaev A. K., Davydova A. V. Empirical Mode Decomposition Method for Processing Data Monitoring of the Subway Power Supply Network. 2023 Seminar on Information Systems Theory and Practice (ISTP), Saint Petersburg, Russian Federation, 2023. R. 37–41. DOI: 10.1109/ ISTP60767.2023.10427026.