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1. Introduction

The methods of redundant coding are widely used in the self-checking discrete 

devices developing. These methods are used both at the stages of automata synthesis 

and at the organization of test and functional diagnosis systems [1, 2]. The features 

of error detection by redundant codes allow developers of discrete devices to give the 

properties of testability and fault detection to their structures [3].



Technical diagnostics and controllable systems 533

 Automation on Transport. No 4, Vol. 6, December 2020

The redundant coding is also used in the testing organization of the combinational 

components of discrete devices, or combination logic circuits [4]. The use of redundant 

coding in this case implies, on the one hand, taking into account the characteristics 

of error detection by the certain code, and on the other hand, taking into account the 

structural features of the combinational circuits themselves. Among such properties of 

codes, it is possible to allocate possibilities of certain type’s error detection (combina-

tions of ones and zero bits distortions) and multiplicities (number of the bits distorted 

at an error) [5]. From the standpoint of the combinational circuit structure it is the 

characteristics of its implementation: ranking of logic elements (or element groups) in 

the structure, the relationships between them, the presence of branches, the number of 

paths between the poles of the circuit with odd and even number of inversions, etc. [6]. 

In this situation, there are two possible ways. The first way consists in choosing a code 

“for” a given circuit structure: searching for a code with the desired features or selec-

ting groups of circuit outputs for separate control by one or another attribute, etc. The 

second way involves a special transformation of the combinational circuit structure into 

some structure that is controllable by the selected code. It should be such a structure 

that allows occurrence of errors only of a certain type or multiplicities.

The codes that are focused on the detection and not on the correction of faults are 

most commonly used in the synthesis of fault detection combinational circuits. This 

makes it possible to obtain devices with a relatively small structural redundancy (as 

a rule, compared to duplication and subsequent comparison of the values of the self-

titled outputs [7]). Among these codes are parity codes [8], constant-weight codes [9], 

codes with summation (Berger codes) [10] and their various modifications [11–13]. 

For example, parity codes do not detect any errors with even multiplicities, but they 

detect any single distortions. This property of parity codes is effectively used in or-

ganizing of the control of combinational circuits by groups of independent outputs

(I-groups of outputs) or after converting the circuit structure into a circuit with 

one I-group of outputs [14–16]. Another example is the use of constant-weight codes 

and classical Berger codes with the property of detecting any unidirectional errors (this 

property of these codes is often used). In this case, either the search for groups of uni-

directionally-independent outputs (UI-groups of outputs) is performed, or the trans-

formation of the circuit structure into a circuit with one UI-group of outputs [17, 18]. 

It is possible to take into account other features of redundant codes and structures of 

controlled combinational circuits [19, 20].

This paper is devoted to the description of the key results of the research of the deve-

lopment of testing methods for combinational circuits based on the properties of codes 

aimed at detecting errors of certain types and multiplicities. It is proposed to organize 

testing of combinational circuits by the property of detecting any errors, except for 

multidirectional errors of even multiplicity, associated with the simultaneous distor-

tion of the same number of zero and ones bits (symmetrical errors). This property is 

possessed by both constant-weight codes and Berger codes and some of their modifica-

tions.
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2. Types of errors and codes with the detection of certain types of errors

The classification of errors in vectors of redundant codes proposed in [5] implies their 

division into several types: symmetrical, unidirectional, and asymmetrical errors. Sym-
metrical errors are associated with the simultaneous distortion of the same number of 

zero and ones bits. Unidirectional errors include errors caused by distortions of only zero 

or only ones bits. Asymmetrical errors occur while distorting an unequal number of zero 

and ones bits. It should be noted that these types of errors are distributed in various pro-

portions in the code vectors depending on their lengths. With an increase in the length 

of the code vector, the proportion of asymmetrical errors increases, while the propor-

tion of unidirectional errors gradually, while symmetrical errors, slightly decreases. For 

example, for the case m = 10, subject to the formation of a full set of output combina-

tions, the proportion of unidirectional errors is approximately 0.2 %, symmetrical —

24.6 %, and asymmetrical — 75.2 %.

Among the variety of codes aimed at detecting errors, special classes of codes are 

detected that detect any unidirectional errors or any unidirectional errors up to the 

established multiplicity dυ — the so-called UED (m, k) and dυ-UED (m, k) codes. Such 

codes, for example, include Berger codes and Bose-Lin codes (modular sum codes). 

Berger codes are UED (m, k)-codes, and Bose-Lin codes are dυ-UED (m, k), where 

the dυ value is determined by the value of the module selected when constructing the 

code [21, 22].

In [23], it was shown that in self-checking devices constructing, the possibility of 

detecting by some codes, in addition to any unidirectional errors, also any asymmetrical 

errors in data vectors can also be taken into account. We introduce the class of codes 

with the detection of any unidirectional and asymmetrical errors — UAED (m, k)-

codes, as well as the class of codes with the detection of any unidirectional and asym-

metrical errors to the established values of the multiplicities dυ and dα, respectively — 

dυ, dα-UAED (m, k)-codes. Taking into account the features of UAED (m, k) and dυ, 

dα-UAED (m, k)-codes allows us to reduce the structural redundancy of the synthesized 

discrete devices.

In organizing of combinational circuits control with using UAED (m, k) and dυ, dα-

UAED (m, k)-codes, the two approaches described above are also possible, however, 

the UI-groups expand to the so-called unidirectionally/asymmetrically-independent 

output groups (UAI-groups). This allows us to simplify the final structures of self-

checking combinational circuits.

The search for UAI-groups of outputs is similar to the search for groups of outputs 

that allow only symmetrical distortions. Here we describe the search conditions for 

such output groups of combinational circuits.

3. Search terms for checkable output groups

We introduce the following notation: {f
1
, f

2
, …, f

m
} is set of combinational circuit 

outputs; {x
1
, x

2
, …, x

n
} is set of combinational circuit inputs; 

1 2
{ , ,..., }ω r

q

a
t j j jf f f=  is 
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a subset of combinational circuit outputs, ( { }1 2, ,..., 1,2,...,qj j j m∈ ), which are dis-

torted when the output element failure with the value of the output function y
t
 (element 

G
t
) is input into the device and when the binary vector 1 2...r na x x x= , where a

r 
is a 

binary decimal equivalent, {0,1,...,2 },n
ra ∈  { }2,3,...,q m∈  receipts on the input.

Consider the combinational circuits shown in Fig. 1.

Figure 1. The combinational circuit in which a symmetrical error may occur at the outputs (a), 
and the combinational circuit in which a symmetrical error at the outputs are eliminated (b)

The circuit shown in Fig. 1, a refers to circuits at the outputs of which a symmetrical 

error may occur (Table 1). For this we have:

{ }0
1 2 3 4, , ;ω f f f=

{ }1
1 2 4, ;ω f f=

{ }2
1 1 2 3 4, , , ;ω f f f f=

{ }3
1 1 2 4, , ;ω f f f=

{ }4
1 3 4 5, , ;ω f f f=

{ }5
1 3 4 5, , ;ω f f f=



536 Техническая диагностика и контролепригодные системы

 Автоматика на транспорте. № 4, том 6, декабрь 2020

{ }6
1 3 5, ;ω f f=

{ }7
1 3 4 5, , .ω f f f=

At the outputs of the circuit depicted in Fig. 1, b, despite the topology, the occur-

rence of symmetrical errors is excluded (Table 2). For this we have:

{ }0
1 2 3 4, , ;ω f f f=

{ }1
1 1 2 4 5, , , ;ω f f f f=

{ }2
1 2 3 4, , ;ω f f f=

{ }3
1 1 2 4 5, , , ;ω f f f f=

{ }4
1 ;ω = ∅

{ }5
1 ;ω = ∅

{ }6
1 ;ω = ∅

{ }7
1 1 3 4, , .ω f f f=

Table 1. The description of the operation of circuit Fig. 1, a in the event of faults 
in the logic element G*

x
1

x
2

x
3

f
1

f
2

f
3

f
4

f
5

1

1

f
y
∂
∂

2

1

f
y
∂
∂

3

1

f
y
∂
∂

4

1

f
y
∂
∂

5

1

f
y
∂
∂

0 0 0 1 1 1 0 0 0 1 (1→0) 1 (1→0) 1 (0→1) 0

0 0 1 1 1 1 0 0 0 1 (1→0) 0 1 (0→1) 0

0 1 0 0 1 1 0 1 1 (0→1) 1 (1→0) 1 (1→0) 1 (0→1) 0

0 1 1 1 0 1 1 0 1 (1→0) 1 (0→1) 0 1 (1→0) 0

1 0 0 1 1 1 0 0 0 0 1 (1→0) 1 (0→1) 1 (0→1)

1 0 1 1 1 1 0 0 0 0 1 (1→0) 1 (0→1) 1 (0→1)

1 1 0 1 1 1 1 0 0 0 1 (1→0) 0 1 (0→1)

1 1 1 1 1 0 1 1 0 0 1 (0→1) 1 (1→0) 1 (1→0)
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Table 2. The description of the operation of circuit Fig. 1, b in the event of faults 
in the logic element G*

x
1

x
2

x
3

f
1

f
2

f
3

f
4

f
5

1

1

f
y
∂
∂

2

1

f
y
∂
∂

3

1

f
y
∂
∂

4

1

f
y
∂
∂

5

1

f
y
∂
∂

0 0 0 1 1 1 0 1 0 1 (1→0) 1 (1→0) 1 (0→1) 0

0 0 1 0 1 1 0 0 1 (0→1) 1 (1→0) 0 1 (0→1) 1 (0→1)

0 1 0 1 1 1 0 1 0 1 (1→0) 1 (1→0) 1 (0→1) 0

0 1 1 1 0 1 1 1 1 (1→0) 1 (0→1) 0 1 (1→0) 1 (1→0)

1 0 0 1 1 1 1 0 0 0 1 (1→0) 0 0

1 0 1 1 1 1 1 0 0 0 1 (1→0) 0 0

1 1 0 1 1 1 1 0 0 0 1 (1→0) 0 0

1 1 1 1 1 0 1 0 1 (1→0) 0 1 (0→1) 1 (1→0) 0

We denote by V
t
 the set of different subsets ω ra

t  with an even number of elements; if 

there are several identical subsets ω ra
t , any one of them is included in the set V

t
.

For Fig. 1, a we have: 
2 1 6

1 1 1 2 3 4 1 2 4 1 3 5{ { , , , }, { , }, { , }}ω ω ωV f f f f f f f f= = = = .

For Fig. 1, b we have: 
1

1 1 1 2 4 5{ { , , , }}ωV f f f f= = .

A subset of the outputs of the combinational circuit 
1 2

{ , ,..., }
qj j jf f f  (j

1
, j

2
, ..., j

q
∈ 

{1,2,..., }m∈ ) is called a symmetrically-independent group (SI-group) if the failure of 

the output of any element G
t
 in the device structure does not cause a symmetrical type 

error on these outputs.

Theorem 1. A failure of the output of the element G
t
 does not cause a symmetrical type 

error on the set of outputs of the control unit 
1 2

{ , ,..., }
pj j jW f f f= , {2,3,..., }p m∈ , if 

the following condition:

 ( )1 2 1 2
1 2

2... ... , ,..., 0,p dd
d

dhkk k h h
d k k k

t t t t t t

fff f f f
Q R f f f

y y y y y y
−

⎛ ⎞∂∂∂ ∂ ∂ ∂ ⎟⎜ ⎛ ⎞⎟⎜ ⎟⎜⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ =⎟⎜ ⎟⎜ ⎟⎟ ⎝ ⎠⎜∂ ∂ ∂ ∂ ∂ ∂ ⎟⎟⎜⎝ ⎠
  (1)

is satisfied for each subset 
1 2

{ , ,..., }ω r
d

a
t k k kf f f= , such that ω ra

t W∈  и ω ra
t tV∈ , where 

1 2 1 2 1 2
, ,..., { , ,..., } \{ , ,..., }

p d p dh h h j j j k k kf f f f f f f f f
−
∈ ; the function 

1 2
2 ( , ,..., )

d

d
d k k kR f f f  

is a conjunction disjunction 
1 2

...
dk k kf f f⋅ ⋅ , { }0,1 ,kf ∈  in which the 

2
d

 variables have 

direct values, and the rest of 
2
d

 the variables have inverse values, and the function 

( )1 2
2 , ,...,

d

d
d k k kQ R f f f⎛ ⎞⎟⎜ ⎟⎜ ⎟⎝ ⎠

 is a function obtained by substituting into a function 2
d
dR  
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instead of designating the output functions f
i
 their representations through input vari-

ables.

Proof. Consider the left side of the equality (1). We introduce the following nota-

tion:

( ) 1 2 ... ,dkk k
t

t t t

ff f
A y

y y y
∂∂ ∂

= ⋅ ⋅ ⋅
∂ ∂ ∂

 ( ) 1 2 ... ,p dhh h
t

t t t

ff f
B y

y y y
−

∂∂ ∂
= ⋅ ⋅ ⋅
∂ ∂ ∂

( )1 2
2 , ,..., .

d

d
d k k kC Q R f f f⎛ ⎞⎟⎜= ⎟⎜ ⎟⎝ ⎠

In accordance with the this theorem, in studying the element G
t
, it is necessary to 

consider all possible subsets of outputs ω ra
t , that are distorted when one or more vectors 

of input variables are received at the device input. In this case, it is enough to consider 

only subsets with an even number of elements, because on subsets with an odd number 

of outputs it is impossible to generate errors of a symmetrical type. The second feature 

of the considered subsets ω ra
t  is that when the input vector a

r
 arrives, the values of 

all the outputs included in the subset are distorted, and any other outputs are not dis -

tor ted.

All subsets ω ra
t with the indicated properties are included by construction in the 

set V
t
 and must be considered by the hypothesis of the theorem. There are no other 

subsets ω ra
t other than those indicated above.

In accordance with the hypothesis of the theorem, each subset ω ra
t tV∈  is considered 

separately.

The left side of the equation (1) contains three cofactors: ( )tA y , ( )tB y  and C. The 

expression ( )tA y  defines those input vectors, upon receipt of which the values of all the 

outputs included in the considered subset ω ra
t  are distorted. The expression ( )tB y  

captures those input vectors, upon receipt of which all the outputs of the device that are 

not included in the subsets ω ra
t  are not distorted. The product ( ) ( )t tA y B y  allows you 

to calculate all those input vectors, upon receipt of which only those outputs that are 

part of a subset ω ra
t  (and all at the same time) are distorted, and not one of the outputs 

that do not belong to this subset is distorted. It is necessary to check the possibility of a 

symmetrical error especially for these input vectors.

For this purpose, the left part of expression (1) includes the cofactor C, which allows 

calculating the ( )ω ra
tD  set of all input vectors, upon receipt of which, in principle, 

symmetrical errors may occur. A symmetrical error is possible if the half of the output 

functions on the input vector in a subset ω ra
t  take the value 0, and the rest take the va-

lue 1. An expression ( )1 2
2 , ,...,

d

d
d k k kR f f f , represented as a function that depends 

on variables 
1 2
, ,...,

dk k kf f f , defines combinations of these variables that meet the spe-

cified condition. The replacing in this expression the notation of the output functions by 

their representations through the input variables allows us to define the set ( )ω ra
tD .
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If ( ) ( ) 0,t tA y B y C≠  then this means that there is at least one input vector, upon 

receipt of which a symmetrical error occurs. If there is an expression ( ) ( ) 0t tA y B y C=  

for all subsets ω ra
t tV∈ , then the failure of the output of the element G

t
 on the consi-

dered set W of the outputs of the combinational circuit does not cause symmetrical 

errors on any input vector.

The theorem is proved.
For the circuit of Fig. 1, a we consider the set { }1 2 3 4 5, , , ,W f f f f f=  and the ele-

ment G*. To verify the conditions of the theorem regarding the element G* it is neces-

sary to verify condition (1) for three subsets: {f
2
, f

4
}, {f

3
, f

5
} and {f

1
, f

2
, f

3
, f

4
}.

For the subset {f
2
, f

4
} we have:

 ( )2 4 1 3 5 2
2 4

1 1 1 1 1
, .

d
d

f f f f f Q R f f
y y y y y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ⎛ ⎞⎟⎜ ⎟⎜⎟⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟⎟ ⎜ ⎟⎜ ⎝ ⎠⎟⎜∂ ∂ ∂ ∂ ∂⎝ ⎠
  (2)

We calculate the derivatives (see formula (2) and Table 1):

1
1 2

1
,f x x

y
∂
=

∂
 2

1
1

,f x
y
∂
=

∂
 3

1 1 3
1

,f x x x
y
∂
= ∨

∂
 4

1 1 2 1 3
1

,f x x x x x
y
∂
= ∨ ∨

∂
 5

1
1

.f x
y
∂
=

∂

We calculate the following expressions for checking the condition (1):

 ( ) ( )2 4
1 1 1 2 1 3 1

1 1
;t

f fA y x x x x x x x
y y
∂ ∂

= ⋅ = ∨ ∨ =
∂ ∂

  (3)

 ( ) 1 3 5
1 2 1 1 3 1 1 2 3

1 1 1
;t

f f fB y x x x x x x x x x
y y y
∂ ∂ ∂

= ⋅ ⋅ = ⋅ ∨ ⋅ =
∂ ∂ ∂

  (4)

( )2
2 4 2 4 2 4, ;

d
dR f f f f f f= ∨

   ( ) ( ) ( )2
2 4 1 1 2 1 2 2 3 1 1 2 1 2 2 3 1 1 2, .

d
dQ R f f x x x x x x x x x x x x x x x x x⎛ ⎞⎟⎜ = ∨ ∨ ∨ ∨ ∨ = ∨⎟⎜ ⎟⎝ ⎠

  (5)

As a result, we have:

( )1 1 2 3 1 1 2 1 2 3 0.x x x x x x x x x x⋅ ⋅ ∨ = ≠

Since the left side of the obtained expression is not equal to zero, the condition of 

the theorem is not fulfilled and the fault of the element G* causes a symmetrical error. 

The left side of the resulting expression defines a function that defines the input vectors 

for which this error occurs. In this case, it is a vector 1 2 3x x x .
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For the circuit, shown in Fig. 1, b, we also consider the subset {f
1
, f

2
, f

3
, f

4
, f

5
} and the 

element G*. In this case, verification of condition (1) is required for only one subset 

{f
1
, f

2
, f

4
, f

5
}.

In this case

( )2
1 2 4 5

1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5 1 2 4 5

, , ,

,

d
dR f f f f

f f f f f f f f f f f f f f f f f f f f f f f f

=

= ∨ ∨ ∨ ∨ ∨

( )2
1 2 4 5, , , 0.

d
dQ R f f f f⎛ ⎞⎟⎜ =⎟⎜ ⎟⎝ ⎠

Therefore, condition (1) is satisfied and the failure of the element G* does not cause 

symmetrical errors on the set of all outputs of the circuit.

The following statement is obvious.

Theorem 2.  A subset of the outputs of the combinational circuit  
1 2

{ , ,..., }
pj j jf f f  

(j
1
, { }2,..., 1,2,...,pj j m∈ ) is a SI-group when each element in its structure satisfies the 

conditions of Theorem 1.
Based on Theorems 1 and 2, it is possible to construct effective algorithms for sear-

ching for SI-groups of outputs and using these groups to obtain completely verifiable 

structures of combinational logic circuits using UAED (m, k) and dυ, dα-UAED (m, k) 

codes by analogy with how this was done in [3, 18].

4. The inputs of the logic elements fault detection

In all studies devoted to the synthesis and analysis of self-checking discrete devices, 

only stuck at-faults of the outputs of logic elements are considered and modeled. How-

ever, stuck at-faults also include faults in the individual inputs of the elements that are 

connected to the inputs of the device. For example, the previously considered circuit 

(Fig. 1, a) contains 13 stuck at-faults of the outputs of the logic elements and 15 stuck 

at-faults of the inputs of the logic elements.

Condition (1) allows us to formulate the following statement.

Theorem 3. If a fault in the output of a logic element in a combinational circuit does not 
cause a symmetrical type error on the set of outputs of the device 

1 2
{ , ,..., }

pj j jf f f  
(j

1
, { }2,..., 1,2,...,pj j m∈ ), then a stuck at-faults in the input of the same element does 

not cause the same error.
Proof. In fact, consider the element G at the output of which the function y is rea-

lized. Let element G have an input *ix  that is connected directly to the input of the 

device ix . On the second input, some function ( )1F x  is implemented. Consider the 

case when an element G implements a conjunction and enters into the system of rea-

lization of a function  f  given in disjunctive normal form. In general, such a scheme 

can be represented in the form of the device shown in Fig. 2.
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Figure 2. Combinational circuit

The function

 ( ) ( )( ) ( ) ( ) ( ) ( )1 2 3 2 3* ,if x x F x F x F x yF x F x= ∨ = ∨   (6)

where ( )1F x , ( )2F x  and ( )3F x  are some arbitrary functions of the variables x
1
, …, 

x
i
, …, x

n
, is implemented at the output of the circuit.

The input variable x
i
 that is fed to the input of the element is indicated with a super-

script *ix . This index means that the failure of the input of the element G corresponds 

to fixing the variable *ix  to a constant, and the variables x
i
 received at the inputs of 

other elements of the circuit are not distorted.

To calculate Boolean differences, we apply the formula

( )

( ) ( ) ( ) ( )1 1 1 1,..., ,..., ,...,0,..., ,..., ,..., ,...,1,..., .
i

i n n i n n

f x
x

f x x x f x x f x x x f x x

∂
=

∂

⎡ ⎤ ⎡ ⎤= ⊕ ∨ ⊕⎣ ⎦ ⎣ ⎦

  (7)

In this case, we have (see formulas (6) and (7)): if * 0ix = , then y = 0 and 

f (x
1
, 3...,0,..., ) ( );nx F x=   if 

* 1ix = , then ( )1y F x=  and ( ) ( ) ( )1 1 2,...,1,..., nf x x F x F x= ∨
∨F

3
(x).

Then

 
( ) ( ) ( ) ( ) ( ) ( ) ( )( )3 1 2 3 .

i

f x
f x F x f x F x F x F x

x
∂ ⎡ ⎤⎡ ⎤= ⊕ ∨ ⊕ ∨⎢ ⎥⎣ ⎦ ⎣ ⎦∂

  (8)

On the other hand, we have:

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

2 3 2 3

3 2 3

0 1

.
i

f x
f x F x F x f x F x F x

x

f x F x f x F x F x

∂ ⎡ ⎤ ⎡ ⎤= ⊕ ⋅ ∨ ∨ ⊕ ⋅ ∨ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∂

⎡ ⎤⎡ ⎤= ⊕ ∨ ⊕ ∨⎢ ⎥⎣ ⎦ ⎣ ⎦

  (9)

Let’s compare expressions (8) and (9).

Each of the derivatives consists of two functions enclosed in square brackets, which 

are interconnected by a disjunction sign. Consider the functions enclosed in second 

square brackets. The relations are

 ( ) ( ) ( ) ( ) ( )1 2 3 2 3 ,F x F x F x F x F x∨ → ∨   (10)
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 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 3 2 3 .f x F x F x F x f x F x F x⊕ ∨ → ⊕ ∨   (11)

Since in both expressions (8) and (9) the functions enclosed in the first square brac-

kets are identical, it follows from (10) and (11) that

 
( ) ( ).

i

f x f x
x y

∂ ∂
→

∂ ∂
  (12)

Thus, the Boolean difference of a variable *ix  contains only those input sets that 

are included in the Boolean difference of the output of the element G.

The theorem is proved.
The Table 3 and 4 shows the Boolean differences for the inputs x

2
 and x

3
 of the ele-

ment G* in the diagram Fig. 1, a. From a comparison of the Tables 1 and 3, 4 it follows 

that relation (12) holds in all cases. For example:

( )
1 1

1 2 3 1 2
1 2 1

,f fx x x x x
y x y
∂ ∂

= → =
∂ ∂

( )
2 2

1 2 1
1 3 1

f fx x x
y x y
∂ ∂

= → =
∂ ∂

, etc.

It can be seen from expression (7) that the Boolean difference combines two chec -

king tests. In the first square brackets, the checking test of the input (or output) of the 

element for the “stuck-at-0” fault is calculated, and in the second square brackets — for 

the “stuck-at-1” fault. Therefore, the value of the Boolean difference is determined only 

Table 3. The description of the circuit Fig. 1, a in case of input x
2
 faults

x
1

x
2

x
3

f
1

f
2

f
3

f
4

f
5

1

1

f
y
∂
∂

2

1

f
y
∂
∂

3

1

f
y
∂
∂

4

1

f
y
∂
∂

5

1

f
y
∂
∂

0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 1 (0→1) 0 1 (0→1) 0

0 1 0 0 1 1 0 1 0 0 0 0 0

0 1 1 1 0 1 1 0 1 (1→0) 1 (0→1) 0 1 (1→0) 0

1 0 0 1 1 1 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 1 (1→0) 1 (0→1) 1 (0→1)

1 1 0 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 1 1 0 0 1 (0→1) 1 (1→0) 0
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by the values of the functions ( )1,...,0,..., nf x x  and ( )1,...,1,..., nf x x  and does not de-

pend on the structure of the subcircuit, which connects the output of the element G with 

the output of the device, and the structure of the subcircuit that implements the function 

( )1F x  at the second input of the element G, because their verification tests are preserved 

with equivalent transformations of combinational devices. In this regard, relation (12) 

is satisfied for any implementation of the function f (x).

Denote by ( )t iy x  the input variable, which is fed to the input of the element G
t
. 

Then the condition under which the input ( )t iy x  failure does not cause a symmetrical 

error on the set of outputs of the combinational circuit 
1 2

{ , ,..., }
pj j jW f f f=  is written 

as follows:

 

( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2
1 2

2

...

... , ,..., 0.

d

p d

d

kk k

t i t i t i

dhh h
d k k k

t i t i t i

ff f
y x y x y x

ff f
Q R f f f

y x y x y x
−

∂∂ ∂
⋅ ⋅ ⋅ ×

∂ ∂ ∂

⎛ ⎞∂∂ ∂ ⎟⎜ ⎛ ⎞⎟⎜ ⎟⎜× ⋅ ⋅ ⋅ =⎟⎜ ⎟⎜ ⎟⎟ ⎝ ⎠⎜ ⎟∂ ∂ ∂ ⎟⎜⎝ ⎠

  (13)

Let’s compare the expressions (1) and (13). It follows from (12) that 
( )

1 1 ,k k

t i t

f f
y x y
∂ ∂

→
∂ ∂

 

( )
2 2 ,j j

t i t

f f
y x y
∂ ∂

→
∂ ∂

 …, 
( )

,d dk k

t i t

f f
y x y
∂ ∂

→
∂ ∂

 
( )

1 1 ,h h

t i t

f f
y x y
∂ ∂

→
∂ ∂

 
( )

2 2 ,h h

t i t

f f
y x y
∂ ∂

→
∂ ∂

 …, 

( )
.p d p dh h

t i t

f f

y x y
− −

∂ ∂
→

∂ ∂

Table 4. The description of the circuit Fig. 1, b in case of input x
3
 faults

x
1

x
2

x
3

f
1

f
2

f
3

f
4

f
5

1

1

f
y
∂
∂

2

1

f
y
∂
∂

3

1

f
y
∂
∂

4

1

f
y
∂
∂

5

1

f
y
∂
∂

0 0 0 1 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1 (0→1) 1 (1→0) 1 (1→0) 1 (0→1) 0

0 1 1 1 0 1 1 0 1 (1→0) 1 (0→1) 0 1 (1→0) 0

1 0 0 1 1 1 0 0 0 0 0 0 0

1 0 1 1 1 1 0 0 0 0 0 0 0

1 1 0 1 1 1 1 0 0 0 1 (1→0) 0 1 (0→1)

1 1 1 1 1 0 1 0 0 0 1 (0→1) 1 (1→0) 0
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Then we have:

    ( )( )
( ) ( ) ( )

( )1 2 1 2... ... ,d dk kk k k k
t i t

t i t i t i t t t

f ff f f f
A y x A y

y x y x y x y y y
∂ ∂∂ ∂ ∂ ∂

= ⋅ ⋅ ⋅ → = ⋅ ⋅ ⋅
∂ ∂ ∂ ∂ ∂ ∂

  (14)

   ( )( )
( ) ( ) ( )

( )1 2 1 2... ... .p d p dh hh h h h
t i t

t i t i t i t t t

f ff f f f
B y x B y

y x y x y x y y y
− −

∂ ∂∂ ∂ ∂ ∂
= ⋅ ⋅ ⋅ → = ⋅ ⋅ ⋅
∂ ∂ ∂ ∂ ∂ ∂

  (15)

From (14) and (15) it implies that

 ( )( ) ( )( ) ( ) ( ).t i t i t tA y x B y x A y B y→   (16)

The validity of statement (1) follows from the fact that in expressions (1) and (13) 

the third factor C is the same.

For the circuit of Fig. 1, a we consider a subset of outputs {f
2
, f

4
} and the fault of in-

put x
2 
of the element G*. Expression (13) has the implies form

 
( ) ( ) ( ) ( ) ( )

( )2 4 1 3 5 2
2 4

1 2 1 2 1 2 1 2 1 2
, .

d
d

f f f f f Q R f f
y x y x y x y x y x

⎛ ⎞∂ ∂ ∂ ∂ ∂ ⎛ ⎞⎟⎜ ⎟⎟ ⎜⋅ ⋅ ⋅ ⋅⎜ ⎟⎟ ⎜ ⎟⎜ ⎝ ⎠⎟⎜∂ ∂ ∂ ∂ ∂⎝ ⎠
  (17)

We calculate the derivatives (see the Table 3):

( )
1

1 2 3
1 2

,f x x x
y x
∂

=
∂

 
( )

2
1 3

1 2
,f x x

y x
∂

=
∂

 
( )

3
1 2

1 2
,f x x

y x
∂

=
∂

 
( )

4
3

1 2
,f x

y x
∂

=
∂

 

( )
5

1 2 3
1 2

.f x x x
y x
∂

=
∂

We calculate the following expressions for checking condition (17):

 ( )( )
( ) ( )

2 4
2 1 3 3 1 3

1 2 1 2
( ) ,t

f fA y x x x x x x
y x y x
∂ ∂

= ⋅ = =
∂ ∂

  (18)

 
( )( )

( ) ( ) ( )
1 3 5

2
1 2 1 2 1 2

1 2 3 1 3 1 2 3 3 1 2( ) ( ) ( ) .

t
f f fB y x

y x y x y x

x x x x x x x x x x x

∂ ∂ ∂
= ⋅ ⋅ =
∂ ∂ ∂

= ∨ ∨ ∨ ∨ ∨ = ∨

  (19)
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From a comparison of (18) and (3) it implies that (see (16))

( ) ( )
2 4 2 4

1 2 1 2 1 1
.f f f f

y x y x y y
∂ ∂ ∂ ∂

⋅ → ⋅
∂ ∂ ∂ ∂

Similarly, a comparison of (19) and (4) implies that

( ) ( ) ( )
1 3 5 1 3 5

1 2 1 2 1 2 1 1 1
.f f f f f f

y x y x y x y y y
∂ ∂ ∂ ∂ ∂ ∂

⋅ ⋅ → ⋅ ⋅
∂ ∂ ∂ ∂ ∂ ∂

Then

( )( ) ( )( )
( ) ( )

2 2 1 3 3 1 2

1 2 3 1 1 2 3 1 2 3

( ) ( )

( ) ( ) .
t t

t t

A y x B y x x x x x x

x x x A y B y x x x x x x x

= ∨ =

= → = =

From (5) it follows that the fault of the input x
2 
of the element G* admits a symmetri-

cal error. The Theorem 3 allows us to formulate the following statement.

Theorem 4. When organizing the testing of a combinational circuit according to the 
UAED (m, k) or dυ, dα-UAED (m, k)-code, for detecting all stuck at-faults of the inputs 
and outputs of logic elements, it is enough to consider only faults of the outputs of logic 
elements.

We also note that in combinational circuits, faults may occur in the lines that con-

nect the device input to the inputs of several logic elements. In this case, a multiple 

malfunction occurs, in which the input signals of several logic elements are fixed into 

constants. The solution to the problem of detecting faults of this type is possible due 

to the imposition of certain requirements on the structure of the electrical installation, 

taking into account the properties of the controlled device [24].

5. The combinational device structure construction

The completely self-checking structure of the combinational circuit is constructed as 

follows. We find SI-groups of outputs that meet the conditions of the Theorem 2. Each 

SI-group is controlled using a separate checking based on the UAED (m, k) или dυ, dα-

UAED (m, k)-code. The control outputs of all control circuits are combined at the inputs 

of a self-checking two-rail signal compression circuit to obtain one control output.

The obtaining the required set of SI-groups of outputs, it is advisable to conduct 

one of the following methods.

The first method is as follows. First, by analyzing all possible subsets of the outputs 

of the combinational circuit, a complete set of the SI-groups of outputs is found. Then, 

the minimal subset of the SI-groups is determined, which includes all outputs of the 

circuit.
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In the second method, a set containing all m outputs is considered first. If it does not 

satisfy the condition of Theorem 2, then all possible subsets with the number of outputs 

m–1, etc., are considered. When the SI-group is found, all the outputs included in it 

are excluded from further consideration. The process ends when all the outputs of the 

combinational circuit are included in any SI-group.

The alternative option to search for SI-groups of outputs is a special transformation 

of the structure of the combinational circuit into a structure whose outputs form a single 

SI-group. The method for converting circuits into circuits with the SI-groups is similar 

to that described in [25] for obtaining UI- and UAI-groups.

6. Conclusion

The article revealed and formalized simple conditions under which the selected set of 

outputs of the combinational circuit forms the SI-group. The search for the SI-groups 

of outputs on the set of outputs of the circuit, in turn, allows to determine all possible 

options for splitting into groups of outputs for effective control based on UAED (m, k) 

or dυ, dα-UAED (m, k)-codes.

As shown in [18] by the example of searching for UI-groups of outputs, the use of one 

of the UAED (m, k)-codes, the Berger code, makes it possible in practice to organize 

self-checking discrete devices with redundancy less than when duplicating. In some 

cases, more than a 50 % reduction in redundancy can be achieved. Expanding the set of 

outputs to the UAI-group allows to further reduce the redundancy of the self-checking 

circuit. The same can be concluded for the method of converting circuits into circuits 

with UAI-outputs, because the conversion will require reservation of a smaller number 

of internal logic elements than by the method proposed in [18]. As shown in the last 

source, the complexity of the technical implementation of the original circuit when 

converted into a device with a controllable structure increases on average by 16 %. The 

use of UAI-groups in the combinational circuits synthesis can reduce this estimate. The 

search for the SI-groups of outputs is, in a sense, identical to the search for UAI-groups 

of outputs, but it is much simpler.

It should be noted that, because the conditions formed are based on the functional 

principle of describing the operation of a combinational circuit, the results obtained 

are not oriented only to circuits implemented on logic elements. The field of their ap-

plication is much wider: the results can be applied to the construction of self-checking 

combinational circuits on a modern programmable element base.
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ОСОБЕННОСТИ ПОСТРОЕНИЯ СИСТЕМ ФУНКЦИОНАЛЬНОГО 
КОНТРОЛЯ КОМБИНАЦИОННЫХ ЛОГИЧЕСКИХ СХЕМ 
НА ОСНОВЕ ПОИСКА ГРУПП СИММЕТРИЧНО-НЕЗАВИСИМЫХ 
ВЫХОДОВ

В статье установлено, что при применении классических кодов с суммированием (кодов 
Бергера) и ряда их модификаций при организации контроля комбинационных схем можно ис-
пользовать их особенности обнаружения как монотонных, так и части немонотонных ошибок 
в информационных векторах. Показано, что возможен поиск групп выходов комбинационных 
схем, на которых могут возникать только симметричные ошибки вследствие одиночных неис-
правностей элементов внутренней структуры схем. Такие группы выходов обозначены как груп-
пы симметрично-независимых выходов. Определены условия принадлежности группы выходов 
комбинационной схемы к группам симметрично-независимых выходов. Показано, что каждая 
симметрично-независимая группа выходов может контролироваться при помощи отдельной 
подсистемы контроля на основе кода с обнаружением любых несимметричных ошибок (в частно-
сти, и любых несимметричных ошибок до определенных кратностей). Представлены пути поиска 
групп симметрично-независимых выходов при организации контроля комбинационных схем.

Комбинационная схема, самопроверяемая структура, монотонная ошибка, симметричная 
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